Chapter 7

Parameterization-Averaged
Subgrid-Scale Fluxes

The grid-volume averaging of the conservation relations as described in
Chapters 4 and 6 results in averaged subgrid-scale correlation terms [e.g.,
poiu! from Eq. (4-21)] and averaged source-sink terms [e.g., S, from
Eq. (4-24)]. In the following three chapters, the representation in mesoscale
models of three types of physical processes are introduced. This specification of
subgrid-scale and source-sink processes using experimental data and simplified
fundamental concepts is called parameterization. Usually the parameterizations
are not defined in terms of basic conservation principles. A parameterization
does not necessarily have to actually simulate the physical processes that it is
representing to be a realistic representation of these terms.

Indeed, if the quantitative accuracy of a parameterization is not sacrificed,
then it is desirable to make the parameterization as computationally simple as
possible. The three processes to be parameterized are

» averaged subgrid-scale fluxes [i.e., pﬂm, pDurTS, etc., in Egs. (4-21) and
(4-24)~(4-26)]

o averaged radiation flux divergence [i.e., part of S; in Eq. (4-24)]

o averaged effects of the change of phase of water, including precipitation
e, S, in Eq. (4-25), part of S, in Eq. (4-24)].

The averaged effects of change of phase, precipitation, and/or change into
other chemical species of atmospheric gases and aerosols other than water
[ie, S, in Eg.(4-26)] is not covered in this text. The reader is referred to
Seinfeld (1975) and Seinfeld and Pandis (1997) for reports on the status of
parameterizing these complex effects.

This chapter describes the parameterization of the averaged vertical subgrid
fluxes. As discussed in Section 10.5 in Chapter 10, horizontal subgrid-scale
fluxes are used only for computational reasons, since little is known of
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horizontal subgrid-scale mixing on the mesoscale (or in other models whenever
Ax; Ay > Agz), although work for ocean mixing, such as that of Young
et al. (1982), offers an avenue for future research. As discussed in Chapter 4,
the magnitude of the subgrid-scale variables and fluxes often can be the same
or even larger than the resolvable dependent variables. A wind gust of 5 ms™!
(representing u"), for example, is not uncommon with an average wind speed
of 5 m s~! (representing i). Figure 7-1 schematically illustrates a subgrid-scale
correlation between vertical velocity and potential temperature. In this exam-
ple. assumed to be close to flat ground so the grid-volume-averaged vertical
velocity is approximately 0 (i.e., @ =~ 0), the ground surface is assumed to
be warmer than the air above, so that an upward perturbation vertical velocity
tends to transport warm air upward, whereas descending motion tends to advect
cooler air downward.! Averaging over the grid interval in this example yields
an upward flux of heat (w’8” > 0 with a magnitude of 6.9 cmKs™"). Thus,
despite the insignificant vertical flux of heat associated with the resolvable
dependent variables (i.e., 8 = 0, since i = 0), a substantial transport of heat
will occur because of the positive correlation between the subgrid-scale vertical
velocity and potential temperature perturbation.

In developing subgrid-scale averaged quantities, however, one must recognize
that the preferred representation is an ensemble average over the grid vol-
ume, rather than simply the grid-volume average as defined by Eq. (4-6). The
ensemble average represents the most likely value of the subgrid-scale quan-
tity, whereas the grid-volume average represents just one realization. Unless
the subgrid-scale quantity is completely deterministic (i.e., without a statisti-
cal component), the two averages will not in general be the same. Thus in the
parameterizations discussed in this chapter, it is assumed that they are the most
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Fig. 7-1. Schematic illustration of subgrid-scale values of vertical velocity, w, poten-
tial temperature, §, and the subgrid-scale correlation, w”6". In this example, the grid-
averaged value of vertical motion is required to be approximately 0 (i.e., @ = 0), and
f = 299.5 K is used. Both grid value averages are assumed to be constant over Ax. The
grid-averaged subgrid-scale correlation w"6" is equal to 6.9 cm K 577,




166 7 Parameterization-Averaged Fluxes

likely (i.e., ensemble) estimates. Wyngaard (1982, 1983) and Cotton and Anthes
(1989) discuss ensemble averaging in more depth. Defining a parameterization
in terms of a realization from a probability distribution is an area meriting
future research. Preliminary work in this area has been completed, as reported
in Garratt and Pielke (1989), Garratt et al. (1990), and Avissar (1991, 1992).

7.1 Basic Terms

To develop parameterization for these subgrid-scale correlations, it is
necessary to introduce several basic definitions. To simplify the interpretation,
a Cartesian coordinate framework is applied in this analysis. Modifications
for when a generalized vertical coordinate system is used were discussed in
Chapter 6.

Neglecting the Coriolis effect, Eq. (4-4) can be rewritten as

a ‘ — " a — "
a(ﬁf +u)=—(u;+ uj)a:(u‘- + u;)

(7 +7")

_ (90 + 8.’ + 9”)
dx

285, (7-1)

i

where Eq. (4-36) is used to represent the pressurc gradient force, with 6 and 7
decomposed using the definitions given by Eqs. (4-3) and (4-12). Assuming that
the synoptic-scale variables are in hydrostatic equilibrium, and that fluctuations
in potential temperature (i.e., 6" and g") are neglected relative to 6, except when
multiplied by gravity,” Eq. (7-1) can be rewritten as

é;(ﬁ —:—H:-'] — _(L_‘j _{_.“j)a(ur- + Li'r-] —80_(W—6;:_T_)
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Averaging this equation over a grid volume using Eq. (4-6) and applying the
assumptions given by Eq. (4-8} yields

a1, a0, g’
= g — i~ U —u — By —
at Pax, T Vax b ax
am, am, &
g 125 4+ s —5.. 7-
[’{é‘x nt 3y 42}‘*‘3 0, i1 (7-3)
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Subtracting Eq. (7-3) from (7-2) gives

du’ _ad , , ou ., Ol du! dw” g”
=i — ]~y — =y — ] — —fy—+g—05. (74)
at fax, ! dx. dx, ’dx, ax; 6,

which is a prognostic equation for the subgrid-scale velocity perturbation.
Multiplying Eg. (7-4) by u. averaging using Eq. (4-6), and applying the
assumption® « = 0 results in

de _ Oe . de — Bii; Lam” u'f" _
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where € = 3 4 and e = 112, In the context of a numerical model, Eq. (7-5) is
the grid- \OIUH'IL.—L'I\-CTdUed‘ bUbf’r]d scale perturbation kinetic energy equatlon‘
This equation is usually called the f:fmtdem kinetic energy equation,® with ¢
the average turbulent kinetic energy.” The individual terms in Eq. (7-3) have the
interpretation given in Table 7-1.

TABLE 7-1.
An Interpretation of the Individual Terms in Eq. (7-3)°

Term Interpretation

Local grid-volume change of averaged subgrid-scale perturbation
b

Kinetic energy

. de .
= Advection of & by the grid-volume-~averaged velocity
D dx
de . . . .
- Grid-volume-averaged advection of ¢ by the subgrid-scale
Tl

perturbation velocity

Extraction from or input to ¢ from the existence of both an average
velocity shear and subgrid-scale velocity fluxes; also referred to as
the shear production of turbulent kinetic energy

Multplying this term by p, and assuming that the anelastic
conservation-of-mass equation is valid fm' Lhe subgrid scale (ie.,

3 = 0) yields 8,(8/dx;) pou)w". Therefore, when the
ane |.:|‘\['IC .:“urr-pf‘or“ is valid. this term causes changes in € only by

{(3/8x ) pou
dvection through the boundaries of the grid volume. As discussed
Lu ml:_\ and Panofsky (1964), the influence of the comelation
ween the turbulent velocity and pressure variables is to transfer
kinetic energy between the three velocity components.

(=2 FJ

o
=

Exiraction or production of é by buoyancy;: referred to as the buoyant
ion of turbulent kinetic energy

derivanon of Eq. (7-3) was hased. discuss the turbulent kinetic
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If Eq. (7-5) were used to simulate the details of turbulence in a model, then
the molecular dissipation of average turbulent kinetic energy would be included
to guarantee a sink for this energy. In a mesoscale model, however, as discussed
in Section 10.6, computational devices such as horizontal filters are applied
to prevent the artificial accumulation of kinetic energy at short wavelengths.
Such mechanisms are necessitated by the inability to resolve both the mesoscale
and the small spatial scales in which the molecular dissipation of kinetic energy
becomes significant.®

To contrast the relative contribution of the two source-sink terms of ¢ in
Eq. (7-5), it is useful to define the ratio

g L ath) LUl aﬁ L aﬁ
Rf:awﬂ'/{wu'a—z-kwv a_z} (7-6)

where R; is called the flux Richardson number. In this expression, horizontal
contributions to the shear production of & are neglected and |du/dz] ~
|0v/9z| > |0w/dz|. The flux Richardson number is a measure of the relative
contribution of the buoyant production or dissipation of averaged, subgrid-scale
kinetic energy relative to its generation or extraction by the vertical shear of
the averaged horizontal wind.

In analogy with the molecular fluxes of heat and momentum [e.g.,
Eq. (3-29)], the vertical subgrid-scale flux terms w”8”, w"u”, and w"v” are
often represented by

- 48 — 7] - ay,
w8 =—Ky—, w'g; = —Kg & w X, — K X
0z 0z dz (-7
= —K ou and AT — K v
wn = m az + whr = m az 3

as assumed, for example, by Eq. (5-3), where K; and K, are referred to as
exchange coefficients. This form of representing the grid-volume subgrid-scale
fluxes is called first-order closure. As discussed later in this section, however, it
is important to note that although molecular mixing is a function of the type of
fluid involved, turbulent mixing, such as represented by Eq. (7-7), is a function
of the flow. Therefore, the turbulent exchange coefficients K, and K,, given
in Eq. (7-7) are not constant in time or in space. Moreover, the expressions
given by Eq. (7-7) require that the subgrid-scale fluxes be downgradient as long
as the exchange coefficients are positive. In the atmosphere, countergradient
turbulent fluxes are often observed (e.g., Deardorff 1966), as discussed just
before Section 7.3.3.3. Nonetheless, Eq. (7-7) has been shown to be a useful
representation of subgrid-scale fluxes.
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Substituting Eq. (7-7) into Eg. (7-6) yields

e /e ()
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where Ri is called the gradient Richardson number. The sign of Ri is determined
by the sign of the lapse rate of potential temperature. Thus the following
conditions apply:

* Ri > 0 corresponds to 36/dz > 0, which indicates a stably-stratified layer.

* Ri = 0 cormresponds to @8/3z = 0. which corresponds to neutral
stratification.

* Ri < O corresponds to 36/dz < 0. which indicates an unstably stratified
layer.

Theory (e.g., Dutton 1976:79) indicates that when Ri is greater than 0.25, the
stable stratification sufficiently suppresses turbulence so that the flow becomes
laminar, even in the presence of mean wind shear. This value of Ri is called the
critical Richardson number.

The unstable-stratified layer itself is broken down into two regimes:

 |Ri| < 1. where the shear production of subgrid-scale kinetic energy is
important (a regime referred to as forced convection).

* [Rif > 1, where the shear production becomes unimportant relative to the
buoyant product of subgrid-scale kinetic energy (a regime called free con-
vection).

The characteristic size of turbulent eddies in the atmosphere are larger during
free convection than under forced convection. Brutsaert (1999) provides a recent
review of boundary-layer turbulence during free convection.

As reported in Turner (1969), the intensity of turbulence near the ground
can be estimated straightforwardly using a wind speed of 10 m, incoming solar
radiation, cloud cover. and time of day. The stability classification scheme dis-
cussed by Turner forms the foundation of most air quality assessments on the
mesoscale in the United States today. Unfortunately, although the dispersion
estimates were developed from observations of diffusion over flat, horizontally
homogeneous terrain, Gaussian plume models using these estimates are being
applied for a wide range of mesoscale systems that are neither flat nor homo-
geneous. As reported by the American Meteorological Society in a position
paper (AMS 1978), over flat, horizontally homogeneous terrain, Gaussian plume
models probably give estimates of downwind plume concentrations within a
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factor of 2. However, much more serious errors can result when this idealized
topography is not achieved (e.g., Pielke er al. 1983).

Equation (7-4) can be used to obtain prognostic conservation equations for
the subgrid-scale fluxes. Multiplying Eq. (7-4) by ] yields

” 6“:'! "= O" o ('JH’-! o aﬁe
W — = —ula, — ul — uu] —u
iar A_ra_rie x}a k}a
du; ,an” 8"
+ uju __*“E o —— + gy — B (7-9)
7 ax dx, 6, '

Writing Eq. (7-4) with k as the free index and then multiplying by u; yields an
equation for uduj/d1. Adding that equation to Eq. (7-9) results in
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gr I, T gy T xR 6
d w . oul am"
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Grid-volume averaging Eq. (7-10) using the assumptions given by Eq. (4-8)
yields

d d Hon i aak o 85
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Prognostic subgrid-scale equations can also be obtained for u/6", u;q,, and
u; x". To illustrate how these equations are derived, multiply Eq. (7-4) by 8",
which results in

a J'j r a [ " a 0o a_
0" T = 0", — ! — 6" —-” —u
gt ! 9x; ' 8 " ax;
aul " a9’
0" u ’-’—-—— -—9 8, — — 8. 7-12
+ e ) 5 +g s (7-12)

A prognostic equation for " can be obtained in a manner analogous to that
used to obtain Eq. (7-4). Equation (2-44) for 6 can be written as

6 ) " = ot 5 7 "
S0+ = (&, +u) 7B +0)+S,

j
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The source-sink term, §;, can be decomposed into a portion that is dependent
only on grid-resolved quantities, which are defined here as 59, and a remainder
that is also a function of subgrid-scale effects, S;. Averaging this relation over
a grid volume using Eq. (4-6) and applying the assumptions given by Eq. (4-8)
yields

a - ag”

=—il; — 0 —u) — +5,.
t “ dx; " 0x; 3%

'J_al (=T}

Note that requiring z = () assumes that the source—sink term has subgrid-scale
effects that average to 0 across the grid volume. This assumption is likely to be
often unrealistic, but nonetheless is used here in the derivation of 8".
B
Subtracting the equation for ; 5 - from u yields
aa” _ 8" ae"

- —eve 7-13
= i 7%, U e ( )+ Ui — Sx, +8,-5,. (7-13)

Equation (7-13) can be mu]trplled by u and added to Eq. (7-12). Perform-
ing the grid- —~volume average to this equation, using the assumptions given by
Eq. (4-8) results in

'y S 9 - d .-8,, 1 aé 8,, r” al’_{.’ oo 68”
— =—u;, —u 8 —uwu — —0"0] — —ulu —
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The prognostic equation for #2 can be determined from Eq. (7-13) by
multiplying that expression by 6" and applying the assumption given by
Eq. (4-8), which results in

=1

a
—i; — 87 —ujf" — 6= ——9 - 675,
it ox, ’ r'?rJ i dx; ¢
These prognostic equations for the subgrid-scale fluxes are referred to as second-
order closure equations. since they provide explicit conservation equations that
are part of

Ty

» the conservation-of-velocity equation, 3(?}{?}'){63,
o the conservation-of-heat equation, 3(u/6")/d1,
o the conservation-of-water equation, a(u’ "y/at, (7-15)
o the conservation-of-other atmospheric gases and
aerosols equation, B(H_'Z) /ot and

e the conservation-of-mass of air equation, d(p"u/)/dr.
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Of these equations, when the assumption that |[p”|/p, « 1 is made, an equation
for p"u] is ignored.

The full equations represented by Eq. (7-15) are computationally expensive
to solve, and in all cases either prognostic equations must be developed for the

third-order correlation terms (i.e., u}'%ﬁ”z. uy % uyu{, etc.) or an assumption
made regarding their functional form. The deve]obment of prognostic equations
will introduce fourth-order correlation terms with an even higher computational
cost. The necessity of truncating the derivation of successively higher-order
subgrid-scale prognostic equations is called closure. Second-order closure, for
example. means that functional forms are assumed for the third-order correla-
tion terms. Third-order closure means that functional terms are specified for
the fourth-order closure terms that appear in the prognostic equations for the
third-order terms.

Mellor and Yamada (1974) present a classic overview of subgrid-scale flux
closure schemes. They start with the complete subgrid flux equations such as
those shown by, for example, Egs. (7-11) and (7-14). They then define differ-
ent levels of complexity in which they discriminate into four levels of detail
in the parameterizations. Their level 4, for example, retains the complete sub-
grid flux equations in their prognostic form, while level 1 is of the form given
by Eq. (7-7). Shafran et al. (2000) discuss level-1.5 parameterizations in which
the only prognostic subgrid flux equation used is the equation for subgrid-
scale kinetic energy. In the words of Mellor and Yamada (1974), the goal of
developing a hierarchical representation is to obtain a parameterization that
is “intuitively attractive and which optimizes computational speed and conve-
nience without unduly sacrificing accuracy.” Petersen and Holtslag (1999) dis-
cuss, for example, a first-order closure for the fluxes and covariances of x.
Sharan er al. (1999) use a level-2 Mellor-Yamada framework to represent o,
in a stable boundary layer. Glendening (2000) discusses the turbulent kinetic
energy budgets for strong shear conditions.

7.2 Surface Layer Parameterization

A parameterization of the vertical subgrid-scale fluxes near the ground can
be obtained using relations such as those given by Eq. (7-7), along with the
requirement of dimensional consistency.” This parameterization plays a major
role in the parameterization of the planetary boundary layer as discussed later
in this chapter.
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From Eq. (7-7).
— du 5

w'u" = —K, — =—u_cosp
’ 7-16
a5 . (7-16)

w' = —K, — = —u_siny,
4z

with
arctan(i/@d) =p  and  pul=r.

Equation (7-16) is a level-1 representation. The parameter u, is called the
friction velociry.® which, when squared and multiplied by the fractional contribu-
tion of the mean wind to each component direction, is equal to the subgrid-scale
fluxes on the left side of Eq. (7-16). The variable 7 is the shearing stress caused
by the horizontal wind. If V' is the magnitude of the grid-volume—averaged flow
[V = (&% + 77)'?]. then Eq. (7-16) can also be written as

K_dV/dz=u. (7-17)

Since K, has dimensions of a length multiplied by a velocity, it is reasonable
to assume that

K, =kzu,. (7-18)

In Eq. (7-16). the friction velocity is the characteristic velocity and kz is used as
a length scale of turbulent eddies near the ground. The constant of proportion-
ality, k, is called von Karman's constant. which from observations in the atmo-
sphere (e.g., Hogstrom 1996) is estimated to have a value of &k = 0.40 £ 0.01
{although Bergmann 1998 reports on a value of k = 0.3678; discussions of this
value of the von Karman constant are given in Andreas and Trevifio 2000 and
Bergmann 2000). The relation given by Eg. {(7-18). however, only applies when
buoyancy production of turbulent kinetic energy is negligible (i.e.. Ri > 0), with
the shear of the mean wind providing the source for the turbulent energy.
Substituting Eq. (7-18) into (7-17) vields

5

L

Wz =u,/kz, (7-19)
which, integrating between the level V = 0 (defined as z,) and an arbitrary level
above the ground z, gives

“?;—_ : d: Ilh_]

Cd=T=[ Sd=2 = (7-20)

az Joy kz k /sy 2 k z

f=]

This relation is called the logarithmic wind profile, and z; is called the
aerodvnamic roughness. With relatively homogeneous upwind fetch, Carl
et al. {1973) found no significant deviation of the wind profile from Eq. (7-20)
up to 150 m when [Ril. as computed from data at 18 and 30 m on a tower, was
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less than 0.05. In performing the integration in Eq. (7-20), u, was assumed to
be invariant with height; thus the layer over which Eq. (7-20) is an accurate
approximation is often called the constant flux layer. This term is inaccurate,
however, since the flux usually decreases exponentially near the surface. If
the surface layer were associated with a constant flux, then the wind speeds
could not decrease near the surface, since < u2 = £ V"w” would be 0! It is
more appropriate 1o define u, as the layer-averaged value using the mean-value
theorem of calculus to factor u, through the integral in Eq. (7-20). This is the
reason why the subscript “0” was included in u, in Eq. (7-20). In addition,
the wind is assumed to not change direction with height; otherwise, Eq. (7-20)
could not be written as a scalar equation.

The value of z;, depends on the characteristics of the surface, ranging from
a value of 0.001 cm over smooth ice to 10 m over large buildings (Oke 1978).
Driese and Reiners (1997) provide values of z; for semi-arid natural shrub-
land. Over some surfaces, such as long grasses and water, z, can be a func-
tion of the friction velocity. Over sand, for example, as reported by Bagnold
(1973), and Vugts and Cannemeijer (1981), z, increases substantially when
u, > 0.1(p,p~'gd)'/?, because of the aeolian transport of sand at stronger wind
speeds. In this expression, p, is the density of sand and d is the diameter of the
sand grains, assuming that all are of the same size.

Over water. Garratt (1992) suggested the form

7o = (0.01625 + 0.00225)u’ /g, (7-21)
while Sheih er al. (1979) suggested the form
2o = (0.016u2/g) + v/(9.1u,),

where v is the kinematic viscosity of air (~1.5 x 107 s~'). Additional discus-
sion of values of z;, to use over water, including the effect of waves, is given in
Powers and Stoelinga (2000). The modification of surface drag by ocean waves
is discussed in Donelan er al. (1997). Zeng et al. (1998) also summarize forms
of z, to use over water. Chamberlain (1983) suggested that Eq. (7-21) may also
apply over other mobile surfaces, such as sand and snow.

Representative values of z, are presented in Table 7-2. A useful illustration
of characteristic values of roughness is given in McRae et al. (1982a, Figure 3).
The paper by van Dop (1983) provides a map of estimated average values of
zp for areas on the order of 20 x 20 km? in the Netherlands based on several
land-type categories.

For specific locations, z; is calculated by taking wind observations at several
heights within the surface layer when the mean wind speed is strong, so that
Ri =0 and V 2 (u/k)In(z/z,) from Eq. (7-20) can be used. The winds are
then plotted as a function of the natural logarithm of height, as illustrated in
Figure 7-2 and extrapolated to the value V = 0. The intersection of the In z-axis
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TABLE 7-2.

175

Representative Values of Aerodynamic Roughness for a Uniform Distribution

of These Types of Ground Cover.

Aerodynamic Height of Displacement
roughness, z; of ground cover height, D
Tee® 0.001 cm
Smooth mud flats” 0.001 cm
Snow® 0.005-0.01 cm
Sand*® 0.03 cm
Smooth desert” 0.03 ¢m
Smooth snow on short grass 0.005 cm
Snow surface, natural prairie 0.1 cm
Soils® 0.1-1 cm
Short grass® 0.3~1 cm 2-10 cm
Mown grass’ 0.2 cm 1.5 cm
0.7 cm Jcm
2.4 cm with V at 4.5 cm
2m=2ms""
1.7 em with V at
2m=68ms!
Long grass® 4-10 cm 25 em-1 m
Long grass (60-70 cm) 15¢n. 9cm” with V
at2m=135ms"’
1l em’, 6.1 em® with V
at2m=2335ms"!
8 cm’. 3.7 cm” with V
at2m=62ms"’
Agricultural crops® 420 cm® ~40 cm-2 m* ~27—~1.3 m"
Orchards® 50-1 m? ~5 m=10 m? ~3.3-~6.7 m*
Deciduous forests® 1-6 m? ~10 m—60 m* ~6.T—~40 m*
Coniferous forests® 1-6 m? ~10 m—60 m” ~6, 740 m*

Rural Delmarva peninsula®

Pakistan desert*

33 cm (for NW flow)

0.03 cm

“From Oke (1978}

"From Snow (1981},

T From Scliers (1865).

defines z,. For particularly complex locations, such as city centers, Davenport
et al. (2000) recommends determining effective roughness using scale models

in wind tunnels.

When the atmosphere near the ground is not neutrally stratified, Eq. (7-19)
must be generalized to include buoyancy effects. The flux Richardson number
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Fig. 7-2. Schematic illustration of the procedure used to compute z, from observa-

tions of mean wind speed at three levels near the ground in a neutrally stratified atmo-
sphere. The slope of the line gives k/u,.

given by Eq. (7-6) can be written as

-yl av
R = 5wl / w5 (7-22)

using Eq. (7-16) and the definition of V.° The flux Richardson number is then
multiplied by

kz 3V
M= T (7-23)
u, 0z
where ¢y, is called the nondimensional wind shear, yielding
R; by = —g w6 kz/6,u’ = z/L. (7-24)

The value of ¢, is defined as unity under neutral stratification [so that
Eq. (7-19) is satisfied] and as a function of the flux Richardson number other-
wise. The parameter L = —8, u2/gw"6" k has the dimensions of a length and
is called the Monin length. Since ¢, is assumed to be a function of Ry, ¢y,
can be written as

by = dy(Ry) = by(dyR:/dy) = ‘3-(’31((3!(‘5)‘17.&1) = ¢y(z/L)

using Eq. (7-24), so that ¢, is a function of z/L only. Values of ¢, determined
from observations are given in Figure 7-3. When z/L < 0 (the atmosphere
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Fig. 7-3. Plot of &, against (z — d)/L in log-log representation for unstable stratifi-
cation. The small dots are data from Hogstrom (1988). The other symbols have been
derived from modified expressions from the sources listed in the key. (From Hogstrom
1996 with kind permission from Kluwer Academic Publishers.)

is unstably stratified), ¢, < 1. while under a stable stratification, ¢y > 1.
The modification to the wind profile can be determined using Eq. (7-23) and
Figure 7-3. The definition given by Eq. (7-23) can be rewritten as
kz 4V :
— —=1-(1=dy)

= “

u

L

or

Qs

Vv U, (1—dy)
=— - —u,,
2 kz kz )

(7-25)

1

Integrating Eq. (7-25) with height, as was performed to achieve Eq. (7-20), gives

- u zfL -
2 pZ -2 1 —¢y)d In =, 7-26
X P X [ ;_{ M) I (7-26)

V=

where a change of variable was made in the integrand and limits. In writing
the right side of Eq. (7-26), L, and «, are assumed to be constant with height
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(L is the layer-averaged value of the Monin length, L). Equation (7-26) is often

written in the form
— u, z z
Viz)=—1{In — — =1, 7-27
=2 (2] o

where z/L > z,/L is assumed; that is,

Uy = fﬂ R il O (l) (7-28)

The function ¢ny(z/L) is the correction to the logarithmic wind profile result-
ing from the deviation from neutral stratification. For a neutral stratification,
iy = 0. Figure 7-4 schematically illustrates the form of V when plotted as a
function of In 7 for stable, unstable, and neutral stratification. Note that z; is
presurned to be independent of stability, so that each profile is extrapolated to
the same value. This is required since ¢, approaches unity as z decreases (i.e.,
z/L = z4/L = 0 if z; « L). Specific observational estimates of ¢,, are dis-
cussed in Hogstrom (1996), with one suggested formula presented in Eq. (7-42).

Expressions analogous to ¢, and ¢, can also be derived for the vertical
subgrid-scale fluxes of potential temperature, water, and other gaseous and

100

z/L<0 z/L=0 z/L>0

z{cm}

O[E_ L I
Q 5 10

Vims"

Fig. 7-4. Schematic illustration of the procedure used to compute the wind profile
near the ground from observations of mean wind speed at three levels, along with the
knowledge of the stability as measured by z/L. The difference between the logarith-
mic wind profile and the actual wind profile at any level is given by (u,/k) i, [from
Eq. (7-27); d, = 0 when z/L = 0, d; > 0 when z/L < 0L
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Fig. 7-5. As in Figure 7-3 except for ¢. (From Hogstrom 1996 with kind permission
from Kluwer Academic Publishers.)

aerosol atmospheric materials. Figure 7-5 illustrates a function form for ¢;.

From Eq. (7-7). and using the same form to represent w”¢g” and w”y”,

36

w'f =K, —=-ub,.
o0z
94,

w'gl = —-K, —/ =—u,q, , (7-29)

e .

X,

U““X-‘-; = _K'{ _T}__ = _-“-' Xr.'.'_‘

The parameter 6, could be called the flux remperature, and g, and y,, are
similar variables that have not been assigned labels. Generally, K, and K, are
assumed to be equal to K; (Yamada 1977), since within the surface layer, 4, q,,
and x,, are presumed to mix solely by subgrid-scale advection. The value of
K,. in contrast, also includes the effect of the subgrid-scale pressure on the
subgrid-scale velocity [as is evident from. for example. Eq. (7-4)], so that in
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general, K, is not assumed to be equal to the other three exchange coefficients.
Warhaft (1976) also shows that there should be differences between K, and K,
when the correlation m is small or when 88/dz and 83/3z have opposite
signs. However, these effects are expected to have a relatively small effect on
the magnitude of the exchange coefficients (Wyngaard 1981, personal commu-
nication), although Lang e al. (1983) presented evidence that K and K, can be
significantly different when substantial horizontal advection of heat and mois-
ture occur over a cool surface. Nevertheless, in the analysis presented below,
an equality between K, and K, is assumed, which should be valid except over
wet areas surrounded by wanner dry land. This topic requires additional study.
By analogy with Eq. (7-23).

B o _ ph: 04, _ Bk oK

6. oz g, 0z X, = By = ‘f’w (7-30)

where the scale and intensity of turbulent mixing of 6, g,, and ¥,, are assumed
to be the same, with B used to indicate that the characteristic vertical mixing
length for 8, 4, and ,, can be different than that for V. It has also been shown
that radiative cooling can significantly affect the magnitude of ¢,; (Garratt and
Brost 1981: Gopalakrishnan et al. 1998). In Eq. (7-30), ¢y equal to unity at
z/L = 0 is required.

Following the same procedure as that used to derive Eq. (7-25) yields

i(2) = Bzo) + %[111 Low ()

G,(0) = G,(z0) + = o []n S (E)} (7-31)
— X, z Z
X(2) = Xnlzp) + Bk [ln :_n — iy (E)} .
where
B L |_5H )
wﬁ_fo —p /L), (7-32)

with a plot of ¢y as a function of z/L from Hogstrom (1996) given in Fig-
ure 7-53. In the derivation of ¢,. z; < z has been assumed. The first terms on
the right side of each equation in Eg. (7-31) are the values of 6, g,, and Y,
evaluated at the level where V becomes O (i.e., z;), although some conclude
that a different roughness length should be used (see Mahrt 1996:95-96 for a
discussion; also Bosveld er al. 1999, Junfang et al. 1999, and Ren et al. 1999).
Ma and Daggupaty (1998) discuss effective roughness lengths of momentum
and heat exchange associated with roughness changes. Sun (1999) concluded
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that it is more accurate to define #(zy) in terms of the surface irradiance tem-
perature rather than using the surface radiation temperature and adjusting a z,
specifically for 8. She also found that a roughness length defined for 6 varies in
space and time much more than z; as obtained from Eq. (7-20). Hence in this
chapter we use the same z, for Eq. (7-31).

Substituting from Egs. (7-30) and (7-23) for the vertical gradient terms in
Egs. (7-29) and (7-17) gives

K, =K aa g, = PR
d).\I CbH

which provides estimates of the exchange coefficients near the ground.

The relation between K, and K, can be derived for certain circumstances.
Pandolfo (1966) has shown from observations that z/L = Ri near the ground
under neutral and unstably stratified lapse rates. When this is true,

. (7-33)

Ri= :.L - Cb_\{Rf = é_\,(Kqu{Km)Ri,
from Egs. (7-24) and (7-8), so that K, /K, = ¢&,,;. Therefore, from Eq. (7-33),
Ko = ku, z/d%,.

Thus, since &y, < 1 when z/L < 0 (see, e.g., Figure 7-3), the turbulent mixing
of 6, §,. and ¥,, is greater than that for velocity in unstable air near the ground.
Unfortunately, this result is not consistent with a value of 8 different than 1.
From this analysis, K, = K, when z/L = 0. since &,, for that value is unity.
However, from Eq. (7-33) and Figs. 7-3 and 7-5. K, = 1.05K at z/L = 0.
Reexamination of the data is needed to clear up this discrepancy near z/L = Q.
However. the values of K, and K, are closer to each other at z/L = 0 using the
Hogstrom (1996) paper than in the earlier Businger et al. (1971) formulation
summarized in Pielke (1982).

When the ground cover is sufficiently high so that significant turbulent flow
can occur below the top (e.g.. within a pine forest, cornfield, etc.), Egs. (7-27)
and (7-31) must be rewritten as

—— . z—D =D
‘»-'(:J:i—;\_-[ln —w_“( . )}

3 - 0, z—D z—D
6(z) :EQ{D“:":@)‘:_E{}H -—Lﬂrﬁ( )}

L= D+z,  (7-34)
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where D is called the zero-plane displacement.'® Values of z, used in these rela-
tions are displaced a distance D from the actual ground surface. In other words,
because of the significant height of ground cover, V.8, 3,. and y,, respond to
the aerodynamic roughness of the top of the ground cover (e.g., the canopy)
rather than the ground surface or the morphology within the high ground cover.
To be a realistic representation of the ground cover, however, the cover must be
uniformly distributed, such as in a forest or large agricultural area. The values
of 8(D + z,), Gy (D + 25), and X, (D + zo) are the values that would occur if
the height z = D actually corresponded to z = 0. Similarly, V(D + z,) would
equal 0 if z = D actoally were z = 0, as shown schematically by the dashed
line in Figure 7-6.

Values of D are determined experimentally by plotting wind speed as a func-
tion of In(z — D) for strong winds. Different D values are substituted into
the expression for V given in Eq. (7-34) until the logarithmic wind profile is
achieved (i.e., a straight line, as illustrated schematically in Figure 7-7).

A useful formula to estimate D for closely spaced stands of crops and trees
(from Oke 1978:98) is given by

2
D=2h (7-35)
3
100+ w
obeys logorithmic wind
profile in strong winds
|
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Fig. 7-6. Schematic illustration of a wind profile (solid line) above and within a
dense, horizontally and vertically uniform ground cover. The dashed line represents the
expected wind profile if D = 0. Below z;, + D, the profile obeys Eq. (7-37) with a constant
value of 4.
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Fig. 7-7. Schematic illustration of the procedure used to compute the wind profile
over tall, dense ground cover given three wind observations over the cover and Ri =~
0. In this example, D = 60 ¢m is assumed to give the best fit to the logarithmic wind
profile; z, is then determined to equal 10 cm.

where h is the height of the vegetation. Oke (1978:119) also reports on a
suggested relationship between roughness and vegetation height for tall, dense
vegetation, which is given by

log,, 2o = log,q £ — 0.98. (7-36)

so that z; >~ h/10. Rosenberg (1974) reports on a formulation for D, based on
observations over different types of agricultural crops given by

log,, D =0.97%1og,, h — 0.154.

Within the ground cover, a wind profile of

- = In z .
y :1-Dexpa(ln L 1) (a>0) (7-37)

can be assumed, with V = V, at the zero-plane displacement height and
lim__, V — 0. However, this expression is accurate only when the density of
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the ground cover is uniform with height. In a non-uniformly distributed ground
cover, such as a deciduous forest, a local wind maximum can occur below the
leaf canopy in the trunk region. Monteith (1975b) provides details on wind
profiles (and vertical distributions of other variables) in a variety of vegetation
types. When Eq. (7-37) is used within a vegetative cover, a is assumed to be
directly proportional to the leaf area index L,, where

L,= AS/AGa (?'38)

with Ag the total leaf area per area of ground surface Ag.

The value of a in Eq. (7-37) is experimentally determined by plotting
observed wind speeds in the form of 1:@/?5) within the ground cover as a
function of (In z/In D) — 1. Fitting the data with a straight line, and recognizing
that V. = 0 at z = 0, yields a. Within com, for example, Blackadar (1969,
personal communication) estimates a value of a ~ 2.0 using the relationship
V =V,expa[(z/D) - 1].

In his simulation of drainage flow, Garrett (1983a) also found that wind
speeds are substantially influenced by the presence of forest. With a 50% cov-
erage of forest, his mode! predicts a 50% decrease in maximum velocity and
depth of the nocturnal drainage flow. Yamada's (1982) model of the bound-
ary layer structure over flat terrain simulates nearly constant low wind speeds
within a forest canopy with large wind shears near the treetops. Oke (1978:131)
concluded that for a given wind speed, the atmosphere is more turbulent over
a forest than over any other natural surface (excluding topographic effects).
Wilson and Shaw (1977) have presented results using a second-order—closure,
one-dimensional model of the flow within a corn crop. Lord et al. (1972) used a
one-dimensional model to investigate the effect of tundra vegetation on the land-
air interface and concluded that a three-dimensional representation is necessary
to account for the horizontal heterogeneity caused by the presence of thaw lakes
atop the permafrost.

Figure 7-6 illustrates how a wind profile would appear during neutral
stratification above and within a dense, horizontally and vertically uniform
ground cover when Egs. (7-34) and (7-37) apply. The profiles of 6(z), §,(z),
and Y, (z) within such ground cover are generally more complex, however,
since #(z) is significantly influenced by radiative flux divergence, whereas
water and other gaseous and aerosol atmospheric materials flow into and out of
the soil and vegetation. The radiation and moisture budgets within and above
vegetation are discussed in Section 11.3.3.2.

Enough basic material has been introduced to permit the discussion of the
parameterization of the planetary boundary layer within mesoscale models.
Additional discussion of similarity theory can be found in such sources as
Jensen and Busch (1982), Arya (1988), Stull (1988), Sorbjan (1989), and Garratt
(1992).
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7.3 Planetary Boundary-Layer Parameterization

Representation of the planetary boundary layer in mesoscale models is
handled primarily through the subgrid-scale correlation terms, since the model
grid resolution is too large to resolve explicitly the small-scale fluxes found
in this layer. Treatment of the influence of the planetary boundary layer in
numerical models can be grouped into two classes;

e those that treat it as a single laver (e.g., Deardorff 1972; Mahrt 1974; Smith
and Mahrt 1981)
o those that resolve it into a number of discrete levels.

In mesoscale models. the second approach is the most common. As shown by
Anthes er al. (1980), for example, detailed boundary-layer resolution is essential
for accurate solutions when differential heating along complex terrain and across
land—water boundaries is being represented, since significant vertical gradients
of the meteorological variables occur within the planetary boundary layer.

With the discrete level approach, the planetary boundary layer can be divided
into three sections: viscous sublayer, surface layer. and transition layer.

7.3.1 Viscous Sublayer

The viscous sublayer’” is defined as the level near the ground (z < Zg; with
D ~ 0). where the transfer of the dependent variables by molecular motions
become important. Zilitinkevich (1970) and Deardorff (1974a) suggest relating
temperature and specific humidity at the top of the layer §:G and g, to the
surface values of the variables 65 and g5 using expressions of the form

6. = B +0.0962(6./k) (1 zo/v)"*
and

4., = qc +0.0962(q, /K) (1, z5/v)"*. (7-39)
By analogy,

Xo, = X +0.0962(x, /k)(1,20/v)"*.
In these expressions, v is the kinematic viscosity of air (~1.5 x 1075 m?s~!)
and k is von Karman's constant with 8,, u,. g., and y, defined by Egs. (7-27)
and (7-31). Between z = z; and z = 2. # = v = w = (, whereas variations of
p and 7 across this depth are ignored.

As discussed by Businger (1973). u_z,/v may be considered the Reynolds

number of the smallest turbulent eddy in the flow. Businger also reports on a
study by Nikuradse (1933) in which laminar flow occurs with u,z,/v < 0.13,
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whereas turbulent motion dominates with u_z,/v > 2.5. In between these
two limits, a transition regime exists. The laminar situation is said to be
aerodynamically smooth, whereas the fully turbulent flow is aerodynamically
rough.

7.3.2 Surface Layer

The surface layer extends from g, to h,, with i, (the top of the surface layer)
usually varying from about 10 m to about 100 m. In this layer, the subgrid-scale
fluxes are represented by mean-layer values that are assumed to be indepen-
dent of height and where the veering of the wind with height owing to the
Coriolis effect is neglected. as used to derive Eqgs. (7-27) and (7-32). With the
assumption that the conditions in this layer are steady and horizontally homo-
geneous, investigators (e.g.. Yamamoto 1959; Yamamoto and Shimanuki 1966;
Shimanuki 1969) have developed empirical formulations for Egs. (7-23), (7-28),
(7-30), and (7-32). to specify the relationship between the dependent variables
and the subgrid-scale fluxes. Hogstrom (1996) provides a recent summary of
these formuiations. Only a limited number of studies with nonhomogeneous
terrain have been done (e.g.. Peterson 1969; Taylor 1977a, b; Taylor and Gent
1981) or sloping terrain {e.g.. Gutman and Melgarejo 1981), and this work has
vet to be applied to mesoscale models.

One of the most common formulations for Egs. (7-27) and (7-31) used in
mesoscale models is that reported by Hogstrom (1996) and Hogstrom (2000,
personal communication). in which'?

U, = KV /[In(z/20) = Una(z/L)].
6., = k(6(z) — 8.,)/0.95[In(z/z0) — Uy(z/L)},

o _ ) (7-40)
q., = k(G(z) — 4.,)/0.95[In(z/20) — Yu(z/L)],
X.., = k(%.(2) — X, )/0.95[In(z/z0) — ¥y (z/L)],
where
e 2in[(1+0)/2]+In[1+({%/2)] —2tan™" {+7/2, z/L<0
M7 153 0<z/L<05.
where {=(1—19z/L)"",
- (7-41)
by = 2n[(1+£3)/2]. z/L<0

| -8.0¢. 0<z/L=0.5,
where gH:(l - 11.6:;1;)1 .;.
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Hogstrom (2000, personal communication) found that his experimental data for
z/L > 0.5 show that ¢y and &, tend to level off, but the data are very scattered:

ks E?N{{I—IQ:;’L)"‘_ z/L<0
M= T o

u, dz | 1+5.3z/L. 0.5>z/L>0
L ] (7-42)
5. _ k20 _ k294G _ kz oX, |(1-116z/1)7% z/L=0
"6, 0z g 6z x._ 3z |1+80z/L. 0=<z/L<0.S5,

with the definition of L given in Eq. (7-24), written as L = 5ufog‘kg9,n‘ The value
of B in Eq. (7-31) was determined to be 1.05. The accuracy of ¢, is estimated
as 10-20% for unstably stratified surface layers with z/L greater than —0.5. The
same accuracy is assumed for ¢y, for unstably stratified surface layers with z/L
greater than —2.0 (Hogstrom 1988). Alternative formulas for these parameters
have been suggested by, for example, Viswanadham and Nogueira (1982), who
provided estimates of &y, for very stable, unstable, and near-neutral surface-
layer stability conditions. Carl et al. (1973), using tower data over homogeneous
terrain, concluded that &, approaches a (—z/L)™"/* relationship in an unstably
stratified surface layer with |7/L| large, rather than (—z/L)~"*, as given in
Eg. (7-42). DeBruin (1999) proposes a formulation for ¢, which is a function
of (—z/L)Y""* as (—z/L) becomes large and approaches the free convection
limit. Hsu ez al. (1999) propose ¢n(z/L)=a(~z/L)?, with a=1.0496 and b=
0.4591 for z/L <0. However, these refinements to ¢,, and ¢y as applied to
mesoscale modeling are relatively minor and should have only a small effect on
the resultant mean profiles of the dependent variables.

The subgrid-scale flux of other gaseous and atmospheric materials can also
be written as

WX, = U X

where v, is called the deposition velocity'* and Y,, is the mixing ratio of the
gas or aerosol at level z. In the absence of scavenging by rain or snow (called
wet deposition), this deposition velocity is used to estimate the dry deposition
of materials with a negligible fall velocity onto the ground and vegetation sur-
faces. The value of v, also depends on the chemical species involved. For SO,,
the deposition velocity is estimated to be on the order of | cms™!, whereas
sulfates of size 0.1~1 pm are reported to have values of around 0.01-1 cms™!
(Eliassen 1980). Everett ef al. (1979) found a value of v, = 1.4 cms™' for
particulate sulfur, whereas Wesely er al. (1978) reports values of v, for ozone
during the daytime ranging from 0.2 to 0.8 cms™' with its peak in midmorning.
Lenschow e al. (1981) gave a value of v, of about 0.5 cms™' for ozone over a
portion of eastern Colorado during the day. These values of v, are for specific
measurement heights (since ¥, is a function of z).
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Sheih e al. (1979) report on a formulation for the deposition velocity of SO,
over land given by

1

Uso, =ku,[In(z/z0) +2.6+ku,rso, —ry] (7-43)

where rgo, represents the surface resistance to SO, uptake. For a vegetative
surface, rgq, is the integrated effect of the stomatal resistance of the plants
(called the effective bulk canopy stomatal resistance). Over water, Sheih
et al. (1979) suggest the formulation

vgo, =ku, [In(ku,z/v,) - lpn] _. (7-44)

where v, is the molecular kinematic diffusivity of SO, in air (v,~0.2 cm?s™'
50%)'* with rgo, =0, since SO, is highly soluble in water. Values of rgo, as
a function of stability class are given in Sheih et al. (1979). The deposition
velocity of sulfate aerosols over land and water is given in Sheih et al. (1979) as

-1

Uso, = KU, [ln{_;;’;o) +krgo, . — LUH] (7-45)

where rgo,. the surface resistance to particle deposition, is assumed to be
1sem™.

Additional discussions of deposition are given by Wesely and Hicks (1977),
Galloway er al. (1980), Brook ez al. (1999), Jackson and Lyford (1999), and
Ma and Daggupaty (2000). Slinn (1982) discusses particle dry deposition to
vegetation.

7.3.3 Transition Layer

The transition layer extends from 4, to z;, which ranges from 100 m or so
to several kilometers or more. Above the surface layer, the mean wind changes
direction with height and approaches the free-stream velocity at the height z; as
the subgrid-scale fluxes #"w" and u"v” decrease in magnitude. The definition of
z,. the top of the boundary layer, is the lowest level in the atmosphere at which
the ground surface no longer influences the dependent variables through the
turbulent transfer of mass.'® Tennekes (1974) gives a useful qualitative discus-
sion of the atmospheric boundary layer, and Krishnamurti ef al. (1983) discuss
different types of boundary layers resulting from different sets of balance of
forces: (a) a balance among Coriolis, pressure gradient, and frictional forces
(an Ekman boundary layer): (b) a balance between the pressure gradient and
frictional forces and the advective accelerations (an advective boundary layer);
and (c) a balance between the pressure gradient and frictional forces (a Stokes
boundary layer). When thunderstorms occur, the boundary layer can extend into
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the stratosphere. However, for most applications in mesoscale models, the plan-
etary boundary layer is between a few hundred meters and several kilometers
or so above the ground.

When the bottom surface is heated, the planetary boundary layer tends to be
well mixed, particularly in potential temperature. Specific humidity is somewhat
less well mixed because the entrainment of dry air into a growing boundary
layer permits a gradient in g, to exist between the top of the planetary boundary
layer and the (usually) more moist surface (Mahrt 1976). Because of horizontal
pressure gradients, winds are the least well mixed. When the surface is cool,
relative to the overlying air, vertical gradients in all of the dependent variables
exist within the planetary boundary layer.

The depth of the planetary boundary layer, z;, is usually associated with an
inversion. As discussed by Oke (1978), there are three types of inversions:

e inversions caused by cooling: radiational cooling at night, or above
stratiform clouds and smog layers, and evaporative cooling over moist
ground

s [nversions caused by warming: synoptic subsidence and cumulus-induced
subsidence

s inversions caused by advection: frontal inversions; warm air over cold land,
water, or snow; and vertical differences in the horizontal advection of tem-
perature.

Busch er al. (1982) discussed the formation of inversions over huge areas in the
polar region caused by several of these mechanisms. Diurnal variations in the
height of the inversion and stability within the boundary layer can contribute to
a large wind maximum just above z;, as discussed by Blackadar (1957), Hoxit
(1975), Zeman (1979), McNider and Pielke (1981), Arritt (1985), Arritt and
Pielke (1986}, and others. Large wind shears can also develop at that level,
caused by increased surface-layer thermodynamic stability over land during a
hurricane landfall (Powell 1982). Internal gravity waves can occur on such inver-
sions (see Section 5.2.1.2), and can influence boundary-layer structure below
that level (see, e.g., Finnegan and Finnegan 1981). Horizontal roll vortices are
often observed within inversion-capped boundary layers that are heated from
below.!”

In the absence of an inversion, when the air is neutrally stratified, Blackadar
and Tennekes (1968) suggested that z; is proportional to u,/f. In contrast,
Deardorff (1972) and Mahrt (1972). as reported by Moss (1978), suggested that
the lifting condensation level is the appropriate height.

Formulations for the depth of the nocturnal boundary layer have been
suggested by Yu (1978), Nieuwstadt and Driedonks (1979), Yamada (1979a),
Zeman (1979), Mahrt (1981a), Nieuwstadt and Tennekes (1981), Wetzel (1982),
Stull (1983), and others. Tomasi (1983) has evaluated the use of several of these
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schemes to predict the height of the nocturnal inversion in Italy’s Po Valley
during stagnate, clear synoptic conditions. In Yamada’s formulation, nocturnal
longwave radiational cooling is included. Gopalakrishnan (1996) concluded that
with light winds on clear nights, radiational cooling dominates the creation of
the nocturnal boundary-layer depth. Sharan and Gopalakrishnan (1997) evaluate
several parameterizations of turbulence in strongly and weakly stable boundary
layers.

Mahrt (1981b) has studied the transition of a daytime mixed layer to a
nocturnal boundary layer. He found that the ageostrophic wind increases during
the transition because the surface shearing stress decreases more slowly than
does the downward transport of momentum associated with the decreased depth
of turbulence; therefore, the winds turn more toward lower pressure. André and
Mahrt (1982) conclude that for the observational datasets in clear sky conditions
which they investigated, the lower part of the nocturnal inversion is turbulent,
although strongly stratified. while the upper portion, despite its weaker strat-
ification. is created almost completely by longwave radiative flux divergence.
Arya (1981) provides a brief summary of proposed diagnostic and prognostic
relations for parameterizing the height of the nocturnal boundary layer. Mahrt
(1983) gives a brief survey of studies on stably stratified boundary layers. Dayan
and Rodnizki (1999) provide a summary of the behavior of a boundary layer
over Israel for a 3-year period.

Variations of the planetary boundary-layer depth caused by subgrid-scale
fluxes need not be parameterized when a local representation to the exchange
coefficients are used, but will appear through changes in the vertical profile of
the dependent variables. However, when a well-defined inversion is present, it
is useful to include an equation that represents its change over time.

When the surface layer is superadiabatic (i.e., 36/3z<0), a simplified
boundary-layer formulation, called a jump model, has been proposed (e.g.,
Ball 1960; Lilly 1968; Tennekes 1973: Deardorff 1974a; Driedonks 1982a).
[liustrated in Figure 7-8, this model has a potential temperature discontinuity
at z, of a magnitude of Af,. Below z;, the turbulent flux of heat, w"§” is
assumed to decrease linearly with height and to become negative in the upper
boundary layer, with its minimum value of w6 at the inversion. Above 2

the lapse rate, defined as 867 /dz, is stably stratified. Such a boundary layer
is called a mixed layer, because the dependent variables, particularly 6, tend to
be uniformly distributed with height.

In this representation, following the discussions of Lilly (1968) and Tennekes
(1973), the growth of z; is given by

(dz,/dr)— 1, =—w 8. /AB, (7-46)

where w_ represents mesoscale or synoptic vertical motion, or both, at z;, When
i, =0, the change in height of z; with time depends on the rate of entrainment
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Fig. 7-8. The potential temperature and heat flux profiles assumed in the “jump”
model.

of mass into the boundary layer.’® The prognostic expression for A#, is

—

dif

d;éf_('d;, A ) a6 w0 —w!o!
dr

-t (7-47)
dz I

where u—ﬁ‘_ is the surface heat flux equal to —u 0, from Eq. (7-29). The first
term on the right side of Eq. (7-47) represents the tendency to increase AB, as
the boundary laver rises. whereas the second term tends to decrease A8, as the
layer warms from the surface. To specify the heat flux at z; in terms of the
surface heat flux. the assumption is made that

w! 0 =—aw/6=+au.0,. (7-48)

where @=0.2 is usuvally used (e.g.. Yamada and Berman 1979; Driedonks
1982b). Swll {1976) summarized published values of a obtained from obser-
vations, while Betts er al. (1992}, and Higeli er al. (2000) reported on values
of e that are quite different than 0.2. Sun (1993a) concluded that representing
entrainment. in such a simple form does not work very well when clouds are
present such that evaporation and radiative cooling can produce negative buoy-
ancy at the inversion height. If dA#,/dt is assumed to be small relative to the
other two terms in Eq. (7-47). then Eq. (7-47) can be written as
dz; 1.2u,6,

g S L 3 7-49
dr T 1 86+/6z (7-49)
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Deardorff (1974a) has improved on the formulation given by Eq. (7-49) using
his three-dimensional numerical planetary boundary-layer simulation of Day 33
of the Wangara Experiment (Clarke er al. 1971). Deardorff’s (1974a) parameter-
ization has subsequently been adopted by Pielke and Mahrer (1975) and others
and shown to be very realistic when the variation of z; with time is strongly
influenced by surface heating. This prognostic representation for the planetary
boundary-layer height can be written as

% g g B 18wl L1
_—= - — — . — w. . Y du
a1 “ax  ugy  a T
) 2 86+ y ,
_ 3‘3u,fzr-)]/ g3- o ol 2L, (7-50)
e

h.‘.

where

(—£u0.2)", 6,<0
w,= by
0, 6,>0

and 5;,5 is the potential temperature at the top of the surface layer. The scaling
velocity, w,. has been called the convective velocity scale, or the Deardorff
velocity (Stull 2000). As in Eq. (7-49), in Eg. (7-50) the growth of z; is
directly proportional to the surface heat flux and mesoscale vertical velocity
and inversely proportional to the overlying stability.

Equation (7-50) can also be used to estimate w,_ if it is assumed the boundary-
layer height is unchanging over time and horizontally homogeneous, 8, =0, and
the net radiational flux divergence is 0. For this case, Eq. (7-50) reduces to

2 30+
W, =—(1,981;5—5.94u§fz,.)/(g_—' —+7.2ui),
' 6y, dz
where z; is obtained from a radiosonde or other observational platform. For
example, with typical values of u,=50cms™', f=10"%"", 6, =300 K,
86%/8z=1°/100 m, and z,=1 km, we have w, =0.03 cm s™h
When 8, =0, @, =0, 36*/3z=0, and dz,/dr=0, Eq. (7-50) reduces to z;=
0.33u,/f, which is the expected depth of the planetary boundary layer in
a steady-state, horizontally homogeneous, neutrally stratified boundary layer.
Obviously, this latter representation for a neutral boundary layer must be mod-
ified in the tropics, where f approaches 0.
The height of the surface layer, ki, can be estimated from z; as

h=0.04z,. (7-51)

For example, with z;=1 km, A=40 m. This formulation was based on the
results of Blackadar (1972, personal communication) and Blackadar and Ten-
nekes (1968), who found the best agreement between their predictions and
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observations in a neutrally stratified boundary layer when Eg. (7-51) was
adopted.

When clouds are present at the top of the mixed layer, the effect of
cumulus-induced subsidence must be included in the w. term in Eq. (7-50).
Brost ef al. (1982a, b) discussed the mean and turbulent budgets in a marine
stratocumulus-topped mixed laver off the California coast. and Augstein and
Wendel (1980) presented a one-dimensional tradewind boundary-layer model
with nonprecipitating cumulus clouds. Chen and Cotton (1983b) discussed a
one-dimensional simulation of a stratocumulus-capped mixed layer in which
the relative importance of turbulence. radiation. and subgrid-scale cloud
condensation are contrasted.

In Augstein and Wendel's study. the authors concluded that radiation was
as important in boundary-layer development as large-scale subsidence and the
horizontal advection of heat and water vapor. According to their model calcu-
lations, solar heating reduces the effect of both condensational heating within
the active cloud layer and evaporative cooling at the top of the cloud layer, as
compared to that occurring at might. This response, resulting from the depen-
dence of saturation specific humidity on temperature, results in deeper clouds at
night because the cumulus convection is more vigorous in the absence of this
solar heating.

7.3.3.1 Idealized Theory

An idealized representation of the winds in the transition layer can be derived
from a simplified form of Eq. (4-21) given in component form by

o0 u _
0=K—=+flv-v,)
872 2
(7-52)

&y
T+ i),

0=K

where only the large-scale horizontal pressure gradient term (as represented
by the geostrophic wind components u, and v, [see, e.g.. Eq. (3-28)], the
Coriolis terms f# and f7. and the vertical subgrid flux terms are retained.
The geostrophic wind is assumed to be constant with height, whereas the
subgrid-scale flux terms are approximated with a constant exchange coeffi-
cient K. The horizontal wind components # and ¢ do not vary with time or in
the x and y directions. An atmosphere represented by these two equations is in
steady-state equilibrium and horizontally homogeneous.

Following Dutton (1976:449), these equations can be written using complex
notation as
FVa . f

i (Vo= V). (7-53)

0=
az’ K
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where Vy=#+it and Vg=u,+iv,. Substituting Vy into Eq. (7-53). it is
straightforward to show that

Vi, — Vg =a, exp[(1+)I7'z]+asexp[—(1+); 2],

where /. =2K/f.
The boundary conditions needed to solve this equation are

Vy=0 at =0 and lirr; Vu=Vs.
Therefore, a, must equal 0 and a,=—Vj. so that
Vy— Vg = —Vgexp[-1(1+0)7'z]
= —Vge'e[cos(z/1g) i sin(z/1g)]. (7-54)

where 7=, 2z, is a representative depth for the boundary layer (i.e., the first
level above the ground where Viy=V,;), assuming that Eq. (7-52) 1s applicable.
The solution to Eq. (7-54) for particular values of f and K is plotted in Fig-
ure 7-9. In the northern hemisphere, where f >0, the winds near the surface,
according to Eq. (7-54), are to the left of the geostrophic wind (i.e., toward low
pressure). The wind veers (i.e.. turns clockwise) with height and slightly over-
shoots the geostrophic value. This spiral wind profile. called the Ekman profile,
is useful in the initialization of mesoscale models, as illustrated by Eq. (11-13)
in Chapter 11. The transition layer is also called the Ekman layer, because this is
that section of the planetary boundary layer in which the average wind direction
changes with height. Kahl and Samson (1988) and Moran and Pielke (19964, b)
have shown how such wind shear influences the transport and dispersion of
pollution.

V/ug

()
Yo
"
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Fig. 7-9. A plot of the Ekman wind using Eqg. (7-54), with f=10"% and K=10 m*s™";
I, =450 m and z,~ 1400 m. Without loss of generality, the components of Eq. (7-54) can
be written as #=u_{1—¢Fcosz/I;) and a'-‘:uﬂ,e‘:'555111:,.-"!E by setting v, =0, which is
how they are displayed in this figure. Rotating the figure through the angle given by the
arctangent of v, /u_ gives the solution of Eq. (7-54) for any direction of the geostrophic
wind.
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7.3.3.2 Parameterization of the Transition Layer

The parameterization of the subgrid-scale correlation terms in the planetary
boundary layer can be grouped into four categories:

» drag coefficient representations

s local exchange coefficients

» exchange coefficients derived from profile functions
+ explicit equations for the subgrid-scale fluxes.

The first three classes above are often called first-order closure representations,
because the subgrid-scale correlations are specified as functions of one or
more of the grid-volume-averaged dependent variables (i,.8.4,,¥,)- The
fourth category is called second-order closure, because prognostic equations
are developed for the fluxes,'® which include triple-correlation terms involving
subgrid-scale variables [e.g.. u7 de/dx; in Eq. (7-5)] that must be represented
in terms of the double-correlation terms or the averaged dependent variables
or both. The procedure to obtain the prognostic equations for the subgrid-scale
fluxes (uu;,u/6"”.u7q]. and u’ x, ) was presented in Section 7.1.

Lewellen (1981). Zeman (1981), Mellor and Yamada (1982), and Wyngaard
(1982) provide derivations and discussion of second-order equations, and Mellor
and Yamada (1974) discuss the different levels of complexity using various sim-
plifications of these explicit representations of the subgrid-scale fluxes. Yamada
(1979b) performed a planetary boundary-layer analysis using one level of the
Mellor—Yamada formulation. Libersky (1980, Table 2) provides an effective
summary of approximations to the terms in second-order closure models, and
Burk (1981) and Lewellen er al. (1983) provide other examples of simulations
using second-order models. As illustrated in Section 7.3.3.4; accurate parame-
terizations of the planetary boundary layer in mesoscale models can be obtained
without using second-order closure, despite arguments to the contrary suggested
by such investigators as Zeman (1981).

The drag coefficient form (also called the bulk aerodynamic formulation) is
given by, for example,

u."'u":—-CD?:COs,u. u"'t"":—CDVESin;_L, and (7-55)

w8 =CpV(6(z,) —8),

where V and 6 are evaluated at some height within the surface layer (often 10 m)
with u equal to the arctan (V/ii). The parameters Cp, and C), are called drag
coefficients. Above this level, a local exchange coefficient form is sometimes
used if there is vertical resolution within the boundary layer. Rosenthal (1970),
Lavoie (1972), and others have obtained realistic simulations using this form.
Rosenthal used a value of C;,=3x 107 for velocity and C;,=0 for heat and
moisture. Lavoie used C,,=7 x 107 over land and C,=1.5x 10~ over water
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for velocity, and used Cj,=1.5x 107 for heat if the surface layer was defined to
be superadiabatic and C, =0 otherwise. Fujitani (1981) presents observational
estimates of the drag coefficient as measured over the East China Sea with
mean values of Cp,=1.3x 1077 and €, =1.2x 107", although both values were
lower for stable surface conditions. In that study, C, had a larger value of about
2.1 x 1073, with high variability, for ligllt winds (V less than 4 ms™).

Because using Eq. (7-16), u?=C,V  from Eq. (7-35), and by Eq. (7-29),
w8, =C,V(6—8(z,)) from Eq. (7-55), substituting for V from Eq. (7-27) and
Q—é(;g'} from Eq. (7-31). and rearranging vields the expressions for C, and
Cp, given by

4

e/l o]
Cp = Bk:/_lné—%(%ﬂ {In;_wﬁ(zﬂ

Thus, except for special cases such as when the winds are strong {so that
Ung(z2/LY=Wy(z/Ly=0] and the aerodynamic roughness of the surface is
unchanging, it is inappropriate to treat the drag coefficient as a constant. Using
drag coefficients, fluxes in the boundary layer can be represented by requiring
Cp=C,=0 at z; with a specified functional form between the surface and z;.

The use of exchange coefficients is of the form given by Eq. (7-7), for
example. where K, and K, are exchange coefficients. If these coefficients are
defined only in terms of local gradients, then they are called local exchange
coefficients, but if they are derived from a vertical interpolation formula that
is independent of local gradients, then they are called profile coefficients.
Blackadar (1979) suggested one form of local exchange coefficient when the
layer being simulated is stably stratified air {6{§,e"3:> 0). which is expressed as®!

(7-56)

I.1(Ric—Ri)?|6V /62| /Ric, Ri<Ri
;_{ C C o (7-57)

K,=K.,=
0. Ri > Ric.

where [ is a mixing length and V =i +1;. In the form used by McNider (1981)
and McNider and Pielke (1981). [ is given as

_ kz, z<200 m
=
70 m, z>200 m.

The parameter Ri. is the critical Richardson number, described following
Eq. (7-8), which should equal 0.25 in the limit as the vertical grid spacing
approaches (. The finite difference value of Ri. increases as the vertical grid
increment increases, as discussed by, for example, Shir and Bornstein (1977).
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Another example of a local exchange coefficient representation is that of
Orlanski er al. (1974), where K,, and K, vary from a background value of these
coefficients only when 36/3z <0. Klemp and Lilly (1978) use a form of mixing
equivalent to a local exchange coefficient, which requires that the Richardson
number in their model always equal or exceed the critical Richardson number,
0.25. A local exchange coefficient is appropriate when the vertical grid res-
olution is high (so that the gradients can be accurately approximated), when
horizontal advection of rurbulence is small, and when the characteristic length
scales of the subgrid-scale mixing are approximately the same size or less than
twice the vertical grid spacing.™

With such a representation, fluxes are always downgradient, since K, =
K, >0 (i.e.. toward smaller values of i, 7, 8, g,. and ;). As shown by Deardorff
(1966). however. countergradient fluxes are known to occur when the surface
layer is superadiabatic (i.e.. z/L <0). Deardorff suggested that the vertical gra-

dient of potential temperature used in the representation w'0" =—K,6/3z be
modified to w’8"=—K, 48 /dz with

36. o6

7 = o — Y. (7-58)

where y.=0.65x107" K m~' to permit fluxes of heat upgradient. Tijm
et al. (1999a), based on Holtslag and Boville (1993) and Holislag er al. (1995),
expressed the countergradient flux effect for /L <« 0 in the following form:

u"'H":—K,j(i—oi——}fc). (7-59)
where |
K.= 1.4,1-1;.-,_;(1 - l) (7-60)
with w_ defined as
w, = (—;—-guﬁ) (7-61)

The countergradient term in Eq. {7-39), expressed using the variables defined in
this chapter, is
u_f,
Ye=—10 . (7-62)

w,z,

K, is an example of an exchange coefficient derived from a profile function.
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7.3.3.3 Parameterization Complexity

It is useful to dissect a parameterization algorithm to determine the number
of dependent variables and adjustable and universal parameters that are intro-
duced. This dissection can be illustrated through the following simple example.
Holtslag and Boville (1993) and Tijm et al. (1999a) propose the following form
for K, above the boundary layer:

K.=[SF,(Ri), (7-63)
where
1 1 1
= — e, 7-64
I, kz * Ag (7-64)
v
S = |— (7-65)
dz |
and
(1—18 Ri)'”2, Ri<0
F,(Ri) = ) (7-66)
1/(1+10 Ri +80 Ri*).  Ri>0.
with

30 m, z<lkm
A= (7-67)

30 m+270exp(1 —(z/1000 m)).

This formulation for K includes the following dependent variables, parameters,
and prescribed constants:

o In Eq. (7-63). the dependent variables I,, S, and F, define K.

« In Eq. (7-64), I, is defined with the independent variable z, the dependent
variable Ag, a.nd the parameter k.

« In Eq. (7-65), S is defined by the vertical gradient of V.

« In Eq. (7-66), F, (Ri) is defined by the dependent variable Ri [which is
defined by Eg. (7-8)] and the constants 18, 10, and 80 and the exponent
1/2.

o In Eq. (7-67). A, is defined by the independent variable z and the constants
300, 30, 270, and 1000.

Therefore, to represent the term K. in addition to the fundamental variables &;
and f, one parameter (k) and eight constants (18, 10, 80, 1/2, 300, 30, 270,
1000) must be provided.

A sensitivity analysis can be applied to show how K, responds to slight
changes in the dependent variables and constants. For example, in Eq. (7-67),
if 100 m were used instead of 300 m when A, dominates in Eq. (7-64), then
K, would be 1/9 as large, since K, is proportional to I3. Clearly, the form of
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Eq. (7-67) will exert a major effect on the parameterized turbulent mixing in a
model.

Niyogi ef al. (1999) discuss such a sensitivity analysis (in their case for
surface fluxes) in terms of the question “What scenarios make a particular
parameter significant?” They also appropriately conclude that parameter uncer-
tainty is not only related to its deviation, but is also dependent on the values of
the other parameters used in a parameterization.

7.3.3.4 Parameterization Comparisons

Various forms of the explicit representation of the subgrid-scale fluxes [e.g.,
(8/80yu”u. (3/80)u’ 8'] have been used by Donaldson (1973), Deardorff
(1974a. b). Lumley and Khajeh-Nouri (1974). Wyngaard and Coté (1974), Burk
(1977). André er al. (1978). Brost and Wyngaard (1978), Gambo (1978), Lee
and Kao (1979). Abdella and McFarlane (1997, 1999), Mironov et al. (1999),
and others. As mentioned earlier in this chapter, Mellor and Yamada (1974)
categorized the level of complexity of those second-order representations.
Although theoretically more satisfving, this more expensive approach, with its
greater degrees of freedom. has not improved simulations of the evolution for
the resolvable dependent variables in the planetary boundary layer over those
obtained using the best first-order representations.

For example, Days 33 and 34 of the Wangara Experiment (Clarke et al. 1971)
has been used extensively to examine the accuracy of various parameterizations
of the planetary boundary layer. Deardorff (1974a), Wyngaard and Coté (1974),
Pielke and Mabhrer (1975), Yamada and Mellor (1975), Dobosy (1979), Sun and
Ogura (1980), Blondin and Therry (1981), Mailhot and Benoit (1982), Chen and
Couton (1983a). Therry and Lacarrere (1983), Sun (1993a), and Finkele (1998),
among others, have attempted to simulate boundary layer structure for all or a
portion of these days. Figure 7-10(a), reproduced from the sophisticated higher-
order model of André er al. (1978), illustrates the evolution of the averaged
vertical potential temperature in the boundary layer using a model that has an
explicit representation of the subgrid-scale fluxes. Figure 7-10(b) shows the
results for the same period using first-order closure, as described in McNider
and Pielke (1981), to represent the vertical exchange coefficient.

Both results closely correspond to the observed profile [Figure 7-10(c)]. The
profiles of the other dependent variables produced by the two models also
closely agree. Yu's (1977) results support part of this conclusion in that he found
that using the McNider and Pielke (1981) parameterization produced accurate
simulations of the growth of the mixed layer when compared to a range of other
schemes, including a simplified second-order representation.

Sharan and Gopalakrishnan (1997) provide another comparison study of
the accuracy of several turbulent closure schemes in terms of their ability
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Fig. 7-10. Comparison of predictions using (a) higher-order closure (Andre et al. 1978)
for Day 33-34 of the Wangara Experiment, (b) first-order closure (McNider and Pielke
1981), and {c} observational data presented by André et al. (1978). The solid and dashed
lines correspond to 1200 LST and 1800 LST on Day 33; the dotted line corresponds to
0300 LST on Day 34
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to represent the stable boundary layer. Another modeling study of several
boundary-layer parameterizations is discussed in Alapaty and Mathur (1998).

Zeman (1979) claims that his economical one-layer model compares favor-
ably against second-order closure models in simulating the evolution of a noc-
turnal boundary layer. Kioppel er al. (1978) showed that the development and
decay of ground-based inversions can be satisfactorily simulated by simple
models. Chang (1979) produced accurate results using a Richardson number
adjustment scheme for heat and momentum exchanges and concluded that this
method provides an economical and realistic alternative to higher-order closure
schemes.

Finally, investigators such as Mailhot and Benoit (1982) have suggested that
an exchange coefficient must depend on the past history of the flow, so they
use a coefficient that is dependent on the second-order property %&rl and a
length scale. However, the first-order exchange coefficients (which are depen-
dent only on resolvable quantities. such as, u; and 6-!) also depend on the his-
tory of the flow, since the resolvable variables themselves were determined in
part from the response to turbulent mixing at previous times. Therefore, con-
trary to the conclusion of Mailhot and Benoit, unless significant turbulent (i.e.,
subgrid-scale) energy created at one grid point is advected or diffused to another
grid cell, it appears unnecessary to include any prognostic equations for the
second-order terms to parameterize the influence of subgrid-scale mixing on the
grid-volume-averaged flow in mesoscale models.

Second-order closure boundary-layer models, of course, remain valuable tools
to use in developing the most accurate first-order closure schemes and in devel-
oping effective parameterizations of the diffusion of pollutants, as described in
Zannettl (1990), Uliasz er al. {1996). and Sharan er al. (1999). Of even more
value, however, may be the use of large-eddy simulation (LES) models (e.g.,
such as reported in Bader and McKee 1983) to determine small-scale responses
over nonhomogeneous terrain to specific sets of mesoscale forcing. Deardorff
(1974a) has used this approach very effectively to develop parameterizations
of mixed layer height for use in mesoscale models. A model is an LES when
the model-resolved fluxes are much larger than the subgrid-scale fluxes (e.g.,
lw8"] < |m8)).

Examples of studies of using LES modeling to improve our understanding
of homogeneous and nonhomogeneous landscapes on the convective bound-
ary layer include Avissar and Schmidt (1998), Avissar er al. (1998), Stevens
et al. {1998, 1999). Gopalakrishnan and Avissar (2000), and Gopalakrishnan
et al. (2000). Mason and Brown (1999) used high-resolution LES modeling to
conclude that length scales of turbulence should be buoyancy dependent, and to
increase with unstable buoyant transfer.
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7.4 Heterogenous Boundary Layers

When the surface is unevenly heated, or of different aerodynamic roughness,
even though it is flat, the resultant surface and boundary-layer fluxes will be
different (see. e.g.. Vickers and Mahrt 1999). As air blows across this landscape,
air near the surface will be directly responding to the turbulent fluxes which
result from that surface. while air higher up will be still responding to the
fluxes that resulted from the passage of the air over the original surface. The
interface between these two sources of turbulent fluxes is called the internal
boundary layer. Figures 7-11 and 7-12 illustrate schematically the behavior of
the internal boundary layer for several different spatial distributions of surface
heterogeneity. Examples of recent papers that discuss the internal boundary layer
include Batchvarova er al. (1999) and Jegede and Foken (1999).

An internal boundary layer resulting from spatially varying surface turbulent
sensible heat fluxes is called a thermal internal boundary layer. Turbulence
that remains above the internal boundary layer will leave an altered vertical
and horizontal structure of the temperature, winds, and other variables once
it decays. This remnant of the turbulence is called fossil turbulence (Gibson
1999). Nieuwstadt and Brost (1986) estimate that it can take up to an hour or so
for surface-forced convective eddies to decay once surface heating is removed.
Mahrt (2000) concludes that internal boundary layers have more a diffuse ver-
tical structure than textbook examples—a result, perhaps, of the heterogenous
character of real world landscapes.

As discussed by Kerman (1982) and others, the growth of such a boundary
layer can substantially influence the occurrence and location of fumigation
in coastal regions. It can also influence the propagation of electromagnetic
radiation (e.g.. Gossard 1978) and the diffusion of pollutants (e.g., Gryning and
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Fig. 7-11. Schematic illustration of the growth of an internal boundary layer with a
neutrally stratified surface layer as airflow advects {a) from a smooth (small z;) to a
rough surface (large z,); and (b) from a rough (large z,) to a smoother (small z,) surface.
Note that for (a), eventually only one planetary boundary layer remains, whereas for (b),
two levels of z, remain, with separate and distinct regions of turbulence that last until
the turbulent kinetic energy in the upper layer decays by dissipation.
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Fig. 7-12. Schematic illustration of the growth of an internal boundary layer as air
advects (a) from a stably stratified surface to a region with an unstably stratified surface
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height of z; over the new surface is lower.
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Larsen 1981). Olsson and Harrington (2000) simulated the growth of an internal
cloudy boundary laver as air flowed off of sea ice to over a relatively warm
ocean surface. Physick er al. (1989) investigated how well a mesoscale model
could simulate an internal boundary layer.

Onishi (1968). Peterson (1969). and others have numerically simulated
changes in surface-layer structure caused by inhomogeneous ferrain using two-
dimensional. steady-state models. Peterson showed that in neutrally stratified
air. the internal boundary layer grows about 1 unit upward for its first 10 units
downstream of a change in surface characteristics. He further claims that the
horizontal fetch must be 100 times its height for the new boundary layer to be
equilibrium.

In an unstably stratified lower boundary layer, the growth of the internal
boundary layer should be more rapid, as shown by Venkatram (1977), Hgjstrup
(1981). Gamo er al. (1983), and others, since the rate of growth is coupled
with the surface heat fluxes [see. e.g.. Eq. (7-30)]. Hejstrup reported that the
growth of the internal boundary laver in the direction of the mean wind # can
be written as

0 /dn=Do, /V,

where D is a constant of order 1 and o, is the standard deviation of the vertical
velocity as a function of height after z;5; has reached its equilibrium value.
With a highly unstable surface layer. V is almost constant with height (except
very close to the ground). Since o, reaches a maximum in the midlevels of the
boundary layer (see. e.g., McNider 1981), 7,5, will have its largest increases for
a given downwind distance at those levels. Higher up, as &, approaches 0, the
growth rate diminishes. From Hejstrup’s results, the ratio of the rate of growth of
Zjp to the distance traveled downstream during its early development was about
I-7 for the most unstable case examined and approximately 1-10 for the most
neutral situation. Venkatram (1977) concluded that the growth of such internal
mixed lavers is enhanced by an increase of roughness, z;,, an increase of the
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temperature difference between the new and original surfaces, and a decrease
in the prevailing wind speed, V. Venkatram’s results agree closely with the
observational results of Raynor er al. (1974). However, slower growth, occurs
when the surface layer is stably stratified (e.g., Mulhearn 1981). For example,
Lyons (1975) reported growth of a boundary layer to only 375 m even after
several days of transit over cold ocean waters.

If the development of the internal mixed layer of 1 unit upward for 10
units downstream is used as the slowest growth rate (i.e., for 6,=0), then a
10-km horizontal distance should be sufficient to generate a 1-km—deep plane-
tary boundary layer. (The degree and the heights to which this mixed layer is
in equilibrium with its new surface needs to be investigated further, however.)

When 6, <0, the growth rate would be greater, as previously discussed. Hsu’s
(1973) observations support the rapid growth of a heated boundary layer after
a change in surface characteristic from relatively cool ocean to land during
the daytime over Florida. Using two towers, one of 10-m elevation over a
beach and one of 100-m elevation 10 km inland, he found that the observations
agreed closely with surface-layer theory developed for horizontally homoge-
neous steady conditions. Similarly, Kerman ez al. (1982) found a rapid adjust-
ment toward equilibrium (~10 km inland) as cold air over Lake Erie advected
onshore over warm land. Additional detailed observations, such as those per-
formed by Vugts (1980) and Gamo et al. (1982), provide further insight into
the growth of the heated internal boundary layer.

These studies indicate that the larger the horizontal grid increment, the more
appropriate it is to represent the boundary-layer structure as being in local equi-
librium after a change of surface temperature and roughness, with the most
rapid adjustment occurring when the surface layer is very unstable. Unfortu-
nately, larger grid increments reduce the horizontal resolution so that the gains
in consistency using boundary-layer theory, which is strictly valid only for hori-
zontally homogeneous conditions, must be weighed against the need for greater
spatial resolution of the forcing.

If the original surface is unstably stratified near the ground, then two layers
of different turbulent characteristics can still result if the equilibrium z; value
of the downwind surface is less than that of upwind surface [e.g., caused by
a smaller z,, as illustrated in Figure 7-12(b)]. For this situation, turbulence
formulations that are parameterized in terms of z; will fail to provide proper
estimates of mixing within the upper layer, although the lower region should be
represented satisfactorily. In the upper region, a formulation such as that applied
by McNider (1981), based on the work of Panofsky e al. (1960) and Blackadar
(1979) and given by _

K, =K,=(1-18R)™"*2|aV/dz|,
could be used. [Here / can be defined using formulas such as Eq. (7-64) or the
definition of [ following Eq. (7-57).] This relation can also be used when air
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with 88/8z <0 advects over a region that has a stably stratified (8, > 0) surface
layer.

Studies that evaluate the effect of spatially varying heat fluxes include
Hadfield er al. (1991, 1992). Serreze er al. (1992), Walko et al. (1992), Avissar
and Schmidt (1998). Banta er al. (1998), Liston and Sturm (1998), Burba
et al. (1999), Cai (1999). Hasager and Jensen (1999), Laubach and Teichmann
(1999), Liston (1999), Panin and Tetzlaff (1999), and Van Breugel ez al. (1999).
Rodriguez-Camino and Avissar (1999) discuss the use of effective parameters
to describe surface heat fluxes in heterogenous terrain. They conclude that
nonlinear relations provide more accurate representations of the surface fluxes
than does linear averaging.

The concept of an effective parameter assumes that an interpolation variable
can be used to accurately represent area-averaged fluxes over a heterogenous
landscape. This interpolation variable itself has no explicit physical realism
(i.e.. it cannot be directly measured or even diagnosed from point measure-
ments}). As shown by Rodriguez-Camino and Avissar (1999) and Ronda and De
Bruin (1999), the relationship between most land-surface characteristics and sur-
face heat fluxes are nonlinear. This makes the computation of effective param-
eters more difficult. Other papers that discuss the effective parameter approach
include Hu er al. (1999).

Analytic and numerical modeling studies indicate that surface fluxes over
heterogeneous flat terrain can be linearly weighted to compute area-averaged
surface fluxes as long as the spatial scale of the landscape variations are smaller
than about 5-10 km on a side (Dalu er al. 1991: Avissar and Schmidt 1998).
This linear averaging of the surface fluxes is called the mosaic approach. These
surface fluxes can be calculated using the theoretical basis for subgrid-scale
parameterizations. as introduced in this chapter. On these spatial scales, it is
assumed (as based on the model) that the surface fluxes blend into a homo-
geneous boundary layer above the surface layer. The heights at which this
occurs is called the blending height (see, e.g.. Goode and Belcher 1999). When
the blending height is within or at the top of the surface layer, this neces-
sarily means that the internal boundary layer is contained within the surface
layer.

However. when the internal boundary layer is above the surface layer, the
mosaic approach is necessarily inadequate. Variations in the boundary-layer
depth can create mesoscale wind circulations (Dalu and Pielke 1993; Zeng and
Pielke 1995a, b). Moreover, when internal boundary layers above the surface
layer are important, parameterizations for subgrid-scale fluxes as used in all
mesoscale and larger-scale models will have errors. There is no parameterization
of subgrid-scale fluxes that include the effects of such internal boundary layers.

The presence of terrain elevation variability introduces an additional type of
landscape variability (Gopalakrishnan and Avissar 2000). This elevation varia-
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tion will accelerate and decelerate the wind flow, even in the absence of surface
frictional effects, as represented by z,. The effect of terrain variability on the
flow is referred to as form drag. This topic was introduced in Section 53 and
is discussed further in Section 12.5.3. With respect to large-scale models, form
drag is discussed in Palmer er al. (1986). and McFarlane (1987).

The results of Panofsky er al. (1981, 1982) suggest that the turbulence spectra
of airflow over complex terrain rapidly reaches an equilibrium with the new
topography for wavelengths that are short compared to the fetch over the new
terrain. Since the vertical velocity spectra generally contain less long-wavelength
energy than the horizontal velocity spectra, it tends to reach equilibrium faster.
Over hilly terrain, the long-wavelength portion of the horizontal velocity spectra,
which is normal to the topography, loses energy to the horizontal terrain-parallel
fiow and to vertical motion. This change in the energy within the individual
components results from the distortion of the mean flow by the terrain. Hgjstrup
(1981) reached the conclusion that the adjustment of the low frequencies to
changing terrain may require hours, so that in reality an equilibrium for these
long wavelengths is never achieved.

Other studies of the influence of terrain on boundary-layer airflow include
the wind tunnel studies by Britter er al. (1981), Pearse et al. (1981), and
Neal er al. (1982): the numerical modeling simulations of a two-dimensional
ridge by Taylor (1981) and of a three-dimensional isolated hill in Alberta by
Walmsley er al. (1982): the analytic study of Jackson and Hunt (1975); and the
observational studies of Camuffo (1982). Hunt and Simpson (1982) summarize
the understanding of the change in boundary-layer structure as air advects over
irregular terrain and other differential surface characteristics. Roth (2000) dis-
cusses how the boundary layer within about three times the height of buildings
in cities is not adequately represented by standard boundary-layer parameteri-
zations (such as discussed in this chapter and used by all existing mesoscale
models). Clearly, this is an aspect of the models that needs improvement.

In any case, the current lack of alternative parameterizations for the boundary
layer in heterogeneous nonsteady conditions requires that only theory developed
for horizontally homogeneous steady-state boundary layers are available for
use in mesoscale models to represent subgrid-scale fluxes.

Notes to Chapter 7

t. In this example. and in actual measurements, upward motion does not always transport warmer
air aloft even if the ground is warmer, because cooler air mixed downward at an earlier time or
different location may be entrained in an upward-moving region.

2. This is essentially the Boussinesq approximation. See Chapter 4 following Eq. {4-15) for a
description of this assumption.
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(%]

The Reynolds assumption; see following Eq. (4-8).
Although the reference to Eq. (7-5) as a turbulent kinetic energy equation is relatively standard,
it is imprecise to do so. since molecular viscosity [e.g., Eq. (3-29)] was ignored in the original
eguations [e.g.. Eg. (2-435)]. Therefore, molecular dissipation of wrbulent energy is excluded in
Eq. (7-3).

5. It is important to note that the averaging operation given by Eq. (4-6) is not the same as
that used in turbulence theory. Standard turbulence observations involve measurements at specific
points on a tower or along an aircraft track. In the first case, averaging is in time, whereas in
the second case a one-dimensional space average is used. The parameterization of subgrid-scale
fluxes, however, uses the resuits from these observational studies, as discussed in this chapter. Such
an equivalence is justified only if the measured turbulence characteristics are essentially the same
as those occurring throughout the averaging grid volume. Porch (1982) presented an example of
a comparison of volume averaging (using an optical anemometer) and a point measurement (a
cup anemometer) for a drainage flow observational study in a California valley. He concluded for
that study that point measurements should be averaged for a relatively long time (around 2 hours)
to represent more accurately the volume-averaged values. Unfortunately. of course, if the spatial
variations are 100 large across the volume, then no amount of time averaging at a point can provide
the appropriate average.

6. A discussion of the number of grid points required to resolve such a range of scales is given
at the beginning of Chapter 4.

7. Schmidt and Housen (1995) provide a useful summary of the use of dimensional analysis in
geophysical problems.

8. Weber (1999) discusses aliemame de‘imtwnb of ihe fncilo

P

\'eiocitv.

10. Hicks and Everett (1979) commented that the dlsplacemem height could be dxfferent for each
of the dependent variables in Eq. (7-34). However, since additional research is needed to ascertain
whether this 1s true, in this section D is treated the same for all variables.

11. A somewhat different formation given by V=V, expa[(z/D)—1] is often used. However,
with this expression, V, does not equal 0 at =0, as it should. Pinker and Moses (1982) have given
an example of the esnmanon of the flow within an evergreen tropical forest using this formulation.

12. Traditionally, this layer was called a “laminar sublayer,” although, as evident in Eq. (7-39),
turbulent fluxes still occur within z <z, since u_, g,, and y, still appear.

13. When a zero-plane displacement D is required, the formulation given by Eq. (7-34) must be
used. Also, in this section, only the flux of water vapor (i.e., n=3) is discussed.

4. The deposition velocity, as reported by. for example, Galloway er al. (1980), is dependent
on the rate of uptake of the gas or aerosol by vegetation, the speed of transfer through the laminar
layer just above the leaf surfaces of the vegetation, and the intensity of turbulent mixing at the top
of the vegetation.

15. This was estimated by R. Pearson, Jr., CSU (1982, personal communication).

6. In the context of a model, the height of the planetary boundary layer is the grid-area (i.c.,
AF' by A )-averaged depth z;, 1o which the grid-volume-averaged fluxes of heat, momentum,
moisture, and pollutants extend through the transfer of mass.

17. Roll vortices also can occur in neutrally stratified boundary layers. In a neutral boundary
layer, roll vortices obtain their kinetic energy from vertical shear of the horizontal wind, whereas in
inversion-capped heated boundary layers. the energy is derived primarily from buoyancy (see, e.g.,
Mason and Sykes 1980. 1982).

18. w67 /AG. =w’ (8. /AB)=w! (p] /Ap,) as long as |8 | K A, « 8,

19. Some investigators (e.g.. Mailhot and Benoit 1982) define first-order closure as meaning that
an exchange coefficient is used to represent the subgrid-scale fluxes [see, e.g., Eq. (7-7)]. In this
text. however, first-order closure means that the exchange coefficients must be dchned only in terms
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of the grid-volume—averaged dependent variables and nor by averages of the higher moments of the
subgrid-scale fluctuations, such as the grid-volume—-averaged subgrid-scale kinetic energy Ll

20. The 0.01 uncertainty in the value of k [see the text before Eq. (7-19}], results in an unc_:crtainty
in C,, and, therefore, the fluxes that can be as large as 10% (0w’ = —ul~—k7).

21. In the surface layer, when Ri = 0, Eg. (7-57) should reduce to K, =ku,z [Eq. (7-18)]. Substi-
wting Eq. (7-19) for |8V /dz| =4V /dz in Eq. (7-57), yields K,, = 1.1 ku,z however. Thus the reason
for the coefficient 1.1 in Eg. (7-37) is not clear. In addition, from Eq. (7-33), K, and K, are not
equal at Ri=0 in the surface layer. Finally, as discussed by Gutman er al. (1973), the vertical
derivative of the horizontal wind vector, rather than the vertical derivative of the wind speed, should
be used in Eq. (7-57) unless the wind direction is invariant with height.

22 A minimum of two grid lengths are needed to represent even a portion of a feature in a model,
and at least four grid lengths are required for somewhat accurate resolution in the conservation
equations, as discussed in Chapter 10.

Additional Readings

To understand the parameterization techniques for representing the subgrid-scale fluxes used in
mesoscale models, it is necessary to understand atmospheric turbulence. Among the valuable texts
in this area are the following:

Lumley, J. L., and H. A. Panofsky. 1964, “The Structure of Atmospheric Turbulence.” Interscience
Monographs and Texts in Physics and Astronomy, Vol. 12, Interscience, New York.

John Lumley wrote the first half of this classic book, and Hans Panofsky wrote the second.
Lumley’s sections provide the mathematical basis for turbulence theory, and Panofsky's
portion emphasizes specific applications of this theory to an improved understanding of
mixing in the atmosphere.

Tennekes, H.. and J. L. Lumley. 1972. “A First Course in Turbulence.” MIT Press, Cambridge, MA.
The authors introduce turbulence theory using effective physical examples of such mixing.
This text is a valuable reference source for nomenclature and clear explanations of turbulence
theory.

The following contributions provide excellent in-depth discussions on how to paramelterize the
ammospheric boundary layer.

Bélair, S., J. Mailhot, J. W. Strapp, and J. I. MacPherson. 1999. An examination of local versus
nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl.
Meteor 38, 1499-1518.

Beljaars, A. C. M., and P. Viterbo. 1998. Role of the boundary layer in a numerical weather pre-
diction model. In “Clear and Cloudy Boundary Layers,” A. M. Holstlag and P. G. Duynkerke,
Eds.. Royal Netherlands Academy of Arts and Sciences, Amsterdam., 287-304.

Blackadar, A. K. 1979. High-resolution models of the planetary boundary layer. “Adv. Environ. Sci.
Eng..” I, J. R. Pfafflin and E. N. Ziegler, Eds., Gordon and Breach Science Publishers, 50-85.

Cuijpers, . W. M., and A. A. M. Holtslag. 1998. Impact of skewness and nonlocal effects on scalar
and buoyancy fluxes in convective boundary layers. J. Arnos. Sci. 58, 151-162.

Eugster, W., W. R. Rouse, R. A. Pielke Sr., J. P. McFadden, D. D. Baldocchi, T. G. F. Kittel, F. S.
Chapin 111, G. E. Liston, P. L. Vidale, E. Vaganov, and S. Chambers. 2000. Land-atmosphere
energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate.
Global Change Biology, 6. 84-115.

Garratt, J. R. and G. D. Hess. 2001. The idealized neutrally stratified planetary boundary layer.
In “Encyclopedia of Atmospheric Sciences,” J. Holton and P. Taylor, Eds., Academic Press,
London.
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Holtslag, A. A. M. 1998. Fluxes and gradients in aimospheric boundary layers. In “Clear and Cloudy
Boundary Layers” A. A. M. Holwslag and P. G. Duynkerke, Eds.. Royal Netherlands Academy
of Arts and Sciences. Amsterdam.

Moran, M. D. 2001. Basic aspects of mesoscale aimospheric dispersion. In “Mesoscale Atmospheric
Dispersion.” edited by Z. Boybeyi, Vol. 3, Advances in Air Pollution Series, Wit Press, Ashurst,
Seuthampton. United Kingdom.

Uliasz, M. 1994, Subgrid scale parameterizations. In “Mesoscale Modeling of the Atmo-
sphere” R. Pearce and R. A. Pielke. Eds.. 13-19. American Meteorological Society,
Boston. MA.

Velho. H. F. C.. R. R. Rosa. F. M. Ramos. R. A. Pielke Sr.. G. A. Degrazia. C. Rodrigues Neto,
and A. Zanandrea. 2001, Multifractal model for eddy diffusivity and counter-gradient term in

spheric wrbulence. Physica 4, 295, 210-223,

Vermeulen. J. P. L. 2001, The atmospheric boundary layer over a heterogeneous vegetated landscape.
Ph.D. Thesis. Vrije University. Amsterdam, 164 pp.

atmy

There are a series of excellent books on boundary-layer theory. The following texts are among

Arva. §. P 198§,

Garratt, J. R. 19
UK.

z. M.. and D. F]L?.‘,_L"’J 1999, “Observations of Surface to Atmospheric Interactions in the
Tropics.” Oxford Universit . New York.

Holtslag. A, A, M., and P. G. 1998, “Clear and Cloudy Boundary Layers” Royal
Netherlands Academy of Ans and Sciences, Amsterdam.

Sorbjan, Z. 1989, =St the Atmospheric Boundary Layer” Prentice-Hall, Englewood Cliffs,

I—mudt' on to Micrometeorology.” Academic Press. San Diego.

¢ Boundary Layer” Cambridge University Press, Cambridge,

Gar

NI
Stull. R. B. 1988. “An Introduction to Boundary Layer Meteorology.” Kluwer Academic Publishers,
The rlands.

Smll. R. B. 2 “Meteorology for Sciemiists and Engineers” 2nd ed.. Brooks/Cole Thomson

A very useful summary of field campaigns and long-term observational facilities to monitor the

boundary layer is reviewed in Tunick (1999). Recent valuable review papers include Avissar (1995)

Select a parameterization for the subgrid-scale heat fiuxes from an atmospheric model of
i issect the parar:':nzaz!on s the technigue outlined in Section 7.3.3.3. List the
les. and adjustzble and universal parameters. Asscss the sensitivity
ted value of the flux for uncertainties of +10% as 2 function of one or more of the

tion used for the velocity fluxes.
7

is not assumed.



