Chapter 12

Model Evaluation

12.1 Evaluation Criteria

Six basic requirements must be met before the credibility of simulations per-
formed with that a mesoscale numerical model can be established by the scien-
tific community. In reading papers in the published literature, one must consider
the same criteria when evaluating the results and conclusions of those papers.
These requirements are as follows.

1. The model must be compared with known analytic solutions. To perform
these experiments, the mesoscale model is forced by very small perturbations,
so that essentially linearized results are produced, or the initial and boundary
conditions are idealized, so that exact solutions to the nonlinear equations are
possible.

2. Nonlinear simulations with the model must be compared with the results
from other models that have been developed independently.

3. The mass, moisture. and energy budgets of the model must be computed
to determine the conservation of these important physical quantities,

4. The model predictions must be quantitatively compared with observations.

5. The computer logic of the model must be available on request, so that
the flow structure of the code can be examined.

6. The published version of the model must have been subjected to peer
review. For this reason, model results presented in recognized professional jour-
nals (e.g., Monthly Weather Review, The Journal of Ammospheric Science, The
Quarterly Journal of the Roval Meteorological Society, Tellus, The Journal of
the Meteorological Sociery of Japan, The Chinese Journal of Atmospheric Sci-
ences, Atmosfera, Atmosphere-Ocean, Boundary-Layer Meteorology, The Jour-
nal of Geophysical Research, Meteorology and Armospheric Physics, Russian
Meteorology and Hvdrology) should carry more weight than those distributed in
report formats.
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122 Comparison with Analytic Theory 443

Hanna (1994) provides a similar list of evaluation criteria. In this chapter, several
of these criteria are examined in more detail.

12.2 Comparison with Analytic Theory

To compare a numerical model with its analytic analog, the equations in the
computational model must be used in the same form as used to develop the
solution for the analytic version. Except for special cases, the development of
an analogous system of equations in a numerical model usually requires that
the equations be linearized. In addition, to minimize computational errors, the
grid resolution of the model must be sufficiently small such that the spatial
scale of the forcing (e.g.. L, and L.) are adequately resolved, as summarized in
Chapter 10, Section 10.6.

Figure 12-1. reproduced from Martin (1981}, illustrates a numerical sim-
ulation performed to validate the model against Defant’s (1950) exact linear
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Fig. 12-1. The horizontal and vertical velocity fields 6 hours after sunrise predicted
by a numerical model analog to Defant’s (1950) analytic model. The input parameters
are given by Eq. (5-99), the results correspond to the exact solution given in Figure 5-4.
(From Martin 1981.)
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solution. Defant’s analytic model was derived in Chapter 5, Section 5.2.3.1.
Although there are minor differences between the fields in Figure 12-1 and those
evaluated from Defant’s solution (e.g., Figure 5-4), the solutions are almost
identical.

Klemp and Lilly (1978) have performed similar comparisons between ana-
Iytic and numerical solutions for airflow over rough terrain. One example is
reproduced in Figure 12-2. In addition to validations against linear theory,
Klemp and Lilly (1978) and Lilly and Klemp (1979) also performed compar-
isons against analytic solutions of a subset set of the nonlinear conservation
equations developed by Long (1953, 1955); see Section 5.3 for a derivation
of the Long model. Although Long’s solutions are valid only for the special
case when the flow is steady state and the density multiplied by the domain-
averaged horizontal velocity squared is independent of hei ght, such comparisons
offer some evidence of the accuracy of the numerical computations. The limita-
tions of Long’s solution to actual stratified flows over an obstacle are discussed
by Baines (1977). Durran (1981) has referenced studies by other investigators
who obtained exact solutions for specialized sets of the nonlinear conservation
equations.
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Fig. 12-2. Comparison of predicted contours of potential temperature 6 for an analytic
solution (dashed line) and the equivalent numerical solution (solid line) for a bell-shaped
mountain of 10 m. Results have been amplified by 50 for illustration purposes. The
normalizing factor d is the characteristic half-width of the mountain. The atmosphere
in this simulation was prescribed as isothermal initially with a large-scale wind flow of
20 ms™, constant with height. (From Klemp and Lilly 1978.)
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12.3 Comparison with Other Numerical Models

In evaluating a numerical model, it is useful to compare its results for a par-
ticular simulation with those of a model from a different set of investigators,
such as reported by Cox et al. (1998). Although all models start with the conser-
vation equations discussed in Chapter 2, such model facets as the computational
schemes. parameterizations, and particular simplified form of the conservation
equations result in different model formulations. Although similar model results
do not necessarily indicate a realistic reproduction of the actual atmospheric sys-
tem, they are useful experiments to ascertain whether independent researchers
using different model structures can replicate each others’ results.

Mahrer and Pielke (1977b) performed a qualitative evaluation of their three-
dimensional simulation of the airflow over the White Sands Missile Range in
New Mexico against that of Anthes and Warner (1974), but used no quantitative
measures of degree of agreement. Tapp and White (1976), Hsu (1979), and
MacDonald er al. (2000) performed a similar qualitative comparison of their
results against the sea-breeze simulation reported in Pielke (1974a). An example
of an intercomparison between the results of Tapp and White (1976) and of
Pielke (1974a) are illustrated in Figure 12-3. Carpenter and Lowther (1981) have
shown that these Florida sea-breeze results are relatively insensitive to changes
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Fig. 12-3. The predicted horizontal winds (a) at 50 m, 10 hours after sunrise (Pielke
1974a) and (b) at 75m, 12 hours after sunrise (Tapp and White 1976). The synoptic
geostrophic wind for both simulations was from the southeast to 6 ms™!, and the maxi-
mum land-surface temperature during the day was 10°C warmer than the surrounding
ocean temperature. The distance between one grid point (indicated by the origin of the
arrows) corresponds to 6 ms™.
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in the vertical grid mesh used. This result is consistent with the two-dimensional
vertical grid resolution sensitivity test illustrated in Chapter 11, Figure 11-6.

Using two-dimensional models, Kessler and Pielke (1982), Mahrer and Pielke
(1978b), and Peltier and Clark (1979) have simulated the airflow over rough
terrain for the Colorado Front Range windstorm of January 11, 1972 (described
by Lilly and Zipser 1972), and compared their results to those of Klemp and
Lilly (1978). A more recent model intercomparison of the simulations of this
wind storm, using 11 different models, is reported in Doyle et al. (2000).

124 Comparison Against Different
Model Formulations

Rather than comparing results from models of different investigators, one
can examine alternative forms of the same model. In one form of sensitiv-
ity study,! changes to the model can include different computational schemes,
other approximations to the conservation equations, and so on. Tapp and White
(1976), for example, contrasted the use of forward-in-time, upstream differenc-
ing (Scheme I in Table 10-1) of the advective terms in their sea-breeze model
with the use of a second-order leapfrog representation (Scheme II in Table 10-1).
Although the results were similar, the use of upstream differencing produced
smoother vertical and horizontal velocity fields. The noisier fields resulting from
the leapfrog representation may have occurred due to the poor handling of phase
speed with that scheme. Mahrer and Pielke (1978b) performed a test of the
upstream spline interpolation (Scheme III in Table 10-1) and the upstream dif-
ferencing in a two-dimensional sea-breeze simulation and found no significant
differences in the results. (In the same paper, however, Mahrer and Pielke found
that the upstream differencing scheme produced mountain wave solutions with
excessive damping, as contrasted with the more realistic appearing solutions
obtained with the spline. Sea-breeze simulations can produce reasonable solu-
tions with upstream differencing because such a mesoscale feature is strongly
controlled by vertical subgrid-scale mixing, whereas simulations of forced air-
flow over rough terrain require a much more accurate representation of advection
and gravity wave propagation.)

The evaluation of nonlinear model results with and without the hydrostatic
assumption is of particular interest. For the sea-breeze circulation, Pielke (1972),
Martin (1981), and Martin and Pielke (1983) examined the relative magnitude
of the nonhydrostatic pressure in a nonlinear model in considerable depth. One
procedure used to evaluate this pressure is to derive a Poisson equation for the
hydrostatic component of the pressure, py = py + py. as was performed for the
Defant sea-breeze model in Section 5.2.3.2. The difference between the total



124 Comparison Against Different Model Formulations 447

and hydrostatic pressure. defined here as R’, represents a grid-volume-averaged
nonhydrostatic pressure residual. In an anelastic formulation, since dp,/dx; is
already required to be in h}-‘drostatic balance, the ratio given by
Py or |6PH . _ 1 4 -
;;-'— |ax I——l.;... (iu'l)
indicates the significance of the nonhydrostanc effect.

To illustrate the derivation of R for a nonlinear model, assume that the depth
of the atmospheric circulation of interest is much smaller than the density scale
depth of the atmosphere (i.e.. L. « H_) so that the shallow continuity equation
in (4-23) can be used, the second term on the left of Eq. (4-35) can be ignored,
and a'/a; can be approximated by §'/6,. In addition, to simplify the analysis
(without losing the generality of the result since p, is assumed hydrostatically
determined) assume (d/0x,)p, = 0(i = 1, 2). For this situation, differentiating
Eq. (4-34) with respect to 7 and Eq. (4-14) with respect to x and y (i.e., 3/dx;
with i = 1. 2), where p is replaced with py, and adding the two equations yields
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— uin —2py€, . —i,
O"('),—pn Tt Po ik "Bx_,- k

a di 8 o'

— —pg— — (i=1.2 12-2

o, Po 3 +8 Pn 9, ( ). )

where du; /0t is evaluated from Eq. (4-14) using py in place of the total pressure

p. Subtracting Eq. (12-2) from the form of Eq. (4-35) for a shallow atmospheric

systemn and with dp,/dx; (i = |, 2) = 0, and assuming that the velocities occur-

ring in Eq. (12-2) that do not involve a time tendency term are the same as the
equivalent velocities in Eq. (4-35), results in the equation®

&R a* a S a our N d af.-*
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(12-3)

where R\ = p—py = p' — py- Smce the magnitude of d/dx; in Eq. (12-1) is
over the same distance for each term. examination of

€= [R'/py]
at each grid point over a model] simulation is an adequate test of the adequacy
of the hydrostatic assumption.
Pielke {1972) found for sea-breeze simulations that for the same scale of
horizontal heating, € became larger as the heating was increased and as the

thermodynamic stratification was made less stable. This result agrees with that
found by Martin for the linear model results discussed in Section 5.2.3 and
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illustrated in Figures 5-5 and 5-6. The variation of the maximum nonhydrostatic
pressure residual as a function of heat input and overlying stratification from
Pielke’s (1972) results are illustrated in Figure 12-4 as a function of the horizon-
tal grid scale used. For each experiment, heat was input within the lowest 300
m over a horizontal distance of 9Ax and over a time scale such that the maxi-
mum heating was reached at the time indicated at the top of the figure. Even for
relatively small scales of horizontal heating over short time periods (e.g., with
L, = 9 km, the time to maximum heating was 30 min), the hydrostatic relation
appears to be a valid assumption for the pressure distribution.

Figures 12-5 and 12-6 illustrate results from Pielke (1972) for a hydrostatic
model run, where py, is used to represent the horizontal pressure gradient, and
for a nonhydrostatic simulation, where p’ = py; + R’ is used for that horizontal
gradient. The scales of horizontal heating in the calculation are 2.7 and 9 km,
with a maximum temperature amplitude, Af,,,., in Eq. (11-30) of 5°, and a
potential temperature gradient in the lowest 2.7 km of the model of 1°C/300
m. In Figures 12-5 and 12-6, day in Eq. (11-30) was defined as 2160 s and
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Fig. 12-4. The maximum absolute value of the nonhydrostatic pressure residual, R,
as a function of horizontal scale of heating and time to maximum heating (Pielke 1972).
To determine R’ from Pielke (1972:26), a large-scale pressure of 1000 mb was used. The
magnitude of maximum heating is A [i.e, using A = A8, in Eq. (11-30)} and B is the
value of 34,/9z in the middle and lower levels of the model in terms of B°C/300 m.
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Fig. 12-5. The vertical velocity in centimeters per second in (a) an anelasﬁc,_nonhy-
drostatic model and (b) a hydrostatic model, where L, = 2.7 km, Ax = 0.3 km, Af___and

max

day in Eg. (11-30) of 5°C and 2160 s, and d6,/6z = 1°C/300 m in the lowest 2.7 km. The
horizontal scale of heating is indicated at the bottom. (From Pielke 1972.)

7200 s, respectively. Despite the short time period of heat input, however, the
differences between the hydrostatic and nonhydrostatic simulations for L, =
9 km were small. With L_ = 2.7 km, the hydrostatic solution had substantially
larger amplitude. although the locations of the convergence zones were similar.
Figure 12-7 illustrates the contribution of the nonhydrostatic pressure residual,
R', 10 the total pressure for Pielke’s (1972) sea-breeze calculations. In a nonhy-
drostatic model, the vertical accelerations act to diminish the magnitude of the
hydrostatic horizontal pressure gradients.

Martin’s (1981) study substantiated Pielke’s (1972) investigation of the rel-
ative influence of the nonhydrostatic pressure residual. In Martin’s thesis, the
nonlinear advection terms are added to Defant’s (1950) analytic equations given
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Fig. 12-6. Same as Figure 12-5 except L, = 9 kmn and day = 7200 s. (From Pielke 1972.)

by Egs. (5-66)+5-70); that is, u'du’/dx and w'du’/dz to Eq. (5-66), u'dv'/dx
and w'dv’/dz to Eq. (5-67), u'dw’/dx and w'dw’/dz to Eq. (5-68), and u'd6'/dx
and w'd6'/dz to Eq. (5-70). A hydrostatic model is formed from these equations
using dpy,/dz = py6'/8, in place of Eq. (5-68) (i.e., A; = 0), and a nonhydro-
static version is derived of the form given by Eq. (12-3) where p’ = p;; + R’
is used in Eqgs. (5-66) and (5-68) with A, = 1. Figure 12-8 illustrates predicted
results for horizontal velocity at the time of maximum heating, where L, =
6.25 km and the largest temperature perturbation is 2.5°C. As in Pielke’s (1972)
earlier study, the nonhydrostatic and hydrostatic results are similar even for this
relatively small spatial scale of heating.

Tag and Rosmond (1980) extended the hydrostatic—nonhydrostatic compar-
ison to a three-dimensional cloud simulation. Among their findings was that
moist processes magnified the nonhydrostatic effect, although increasing the
stability from 1 to 2°C km™' almost eliminated the differences caused by the
nonhydrostatic effect.
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Fig. 12-7. A schematic of the relative contributions of the nonhydrostatic pressure
residual and the hydrostatic pressure to the total pressure at a location over land in
the center of the lowest pressure in the sea-breeze convergence zone. The arrows illus-
trate the instantaneous horizontal winds that would be expected from these pressure
distributions. (Adapted from Pielke 1572.)

One of the advantages of using Eg. (12-3) to compute the nonhydrostatic
pressure residual is that it must be computed only in a region where significant
vertical accelerations exist. As illustrated in Figure 12-9, the boundary condition
for R on the subdomain is straightforward to apply. since R = 0 where the
motions are hydrostatic.

The importance of the nonhydrostatic residual has also been examined, to
some extent, for forced air over rough terrain. Figure 12-10, reproduced from
Durran (1981). shows potential temperature surfaces from one of Klemp and

nonhydrostatic hydrosiatic

Fig. 12-8. Nonhydrostatic and hydrostatic simulations for L, = 6.25 km after 2700 s
with a surface heating function of 6 = B,(f = 0) + |A8]_,, sin(2wx/L.) sin{wt/T), where
Afl ... = 25C and T = 3 h. The horizontal and vertical grid spacings were Ax =
0.306 km and Az =100 m. Periodic lateral boundary conditions were used. Other pre-
scribed values include 86,/dx = 10°C km'?, K, = 10 m®s~!, f = 1.301 x 10~* 57!, and
gy and o, = 107% s 1. (These symbols are explained in Section 5.2.3.1.) Positive values
are given by the solid line and negative values are represented by dashed lines, with 0
indicated by the dotted line. (From Martin 1981.)
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Fig. 12-9. The definition of a subdomain, Dy, in a model where nonhydrostatic
effects are significant. Such a domain is defined to enclose those regions where F(x, y)
is significantly different from 0.

Lilly’s (1978, Figure 10) hydrostatic simulations and an equivalent result per-
formed by Durran for a nonhydrostatic simulation. In both model runs the
upstream wind was 20 ms~', constant with height, the mountain height reached
1 km, 86,/8z = 4°C k™' within the lowest 10 km, and an isothermal absorb-
ing layer (see Section 11.3.2 and Figure 11-18) was prescribed between 10 and
20 km in height. The half-width of the mountain was 20 km, where the terrain
was defined as

zg = bzg_ [(x* +B), (12-4)

where b is the half-width and zg5 _ is the maximum height of the terrain.
Although the nonhydrostatic simulation produced a slightly steeper wave in the
upper stratosphere, the hydrostatic and nonhydrostatic results are almost iden-
tical. Klemp and Lilly (1980) concluded that for realistic atmospheres with
simple, uniform structure (i.e., constant large-scale velocity and static stability
with height), ratios of (b/|u,])[(g/6,)(36,/8z)]'* = 10 or so yield nearly iden-
tical hydrostatic and nonhydrostatic results. For example, with d6,/dz =1 K
100m™', 6, = 300 K, and u, = 20 ms~!, b > 10 km or so satisfies this require-
ment. For a more general atmospheric structure, however, it is desirable to check
the hydrostatic assumption for each situation.
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Fig. 12-10. Contours of potential temperature from (a) a nonlinear hydrostatic sim-
ulation by Klemp and Lilly (1978), and (b} a nonlinear nonhydrostatic simulation by
Durran (1981). The upstream winds were 20 ms~?, and the upstream stratification within
the lowest 10 km was 4°Ckm™. Note that because of scale differences the height scale
in (b) is about 8% larger than that in (a). To more quantitatively compare the two results,
measure the trough-to-crest difference for equivalent initial inflow potential tempera-
ture heights,
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12.5 Calculation of Model Budgets

Evaluation of the budgets of such physical quantities as kinetic energy and
mass is useful not only to improve our understanding of mesoscale physical
processes, but also, as a diagnostic tool to examine the fidelity of the com-
puter program logic. Before discussing such budgets of mesoscale models, it is
useful to examine this approach with the single fluid tank model introduced in
Section 5.2.1.1.

12.5.1 Mass and Energy Equations for the
Homogeneous Tank Model

The mass budget for this simplified model given by Egs. (5-17) and (5-20)
is particularly easy to compute, since the fluid is assumed to be homogeneous.
Using the product rule of differentiation and integrating Eq. (5-20) over the tank
model domain, D, yields

-[JD on 'C‘T‘f -uhdx—'/j;(;—]:dx—l—u’haxz(].

0

If the sides of the tank (x = 0, D,) are rigid (i.e., uy = up, = 0),° or if
periodic boundary conditions for h and ' are used (i.e., u'h at x = 0 is equal
to u'h at x = D), then

D: 9h a oh

|5 ax T hax=" o,
ot = ar

so that the average height of the fluid must be constant in time. In a numerical

model, the conservation of mass, as represented by the depth of the fluid, can

be checked at each time step by

52—2}1

where I, is the number of grid points. If Ah/At # 0, then mass is not conserved.

The kinetic energy of the tank model can be computed by multiplying
Eq. (5-17) by hu' and Eq. (5-20) by u?/2, yielding the two simultaneous partial
differential equations

o' ,au Ok au?/2 d [u? ah
— + hu"— hu' =h hu'— — =
hu' o + hu” e + ghu x o + hu Bx( 3 ) + ghu' e 0
w?dh  uw? 9k uw? 3 uPdh  u? 3 ,
Ta T Rt T T T T T ™) =0
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Adding these two equations using the product rule of differentiation and multi-
plying through by the constant density p, yields

d ( u® ) d ( u':; ) N ; Jdh 0 (12-5)
— pp—h )+ —|p,—h _ — =0, _:
\p,_ 5 n, P u poghu P _

where p,(1~/2h) as units of kinetic energy per unit area.
e potential energy equation is obtained by multiplying Eq. (5-20) by p.gh,
resulting in
ah a a2 du'h
o Jh‘———prgh—hu = pug ! + pogh— =0, (12-6)
at dx
where p,gh®/2 has units of potential energy per unit area.
To obtain the total energy, add Egs. (12-5) and (12-6) and rearrange, giving

d u” h? 2 . .
ar [Pc.?h + ,Oc-g?] + e [}1:{ (pU-Q_ + pogh)} =0. (12-7)

The first term on the left is the local change of total energy per unit area E, and
the second term is proportional to the horizontal flux divergence of this energy
per unit area.

Integrating this expression over the model domain (i.e., the size of the tank)

il=]
.
<
L

D GEF 2 BE
I E:-‘- dx = —hu (pl gy = Dy qh) = ——f ID

dif

which is equal to 0 if the walls are rigid or if cyclic boundary conditions are
applied. If 6E;/0t = 0. then total energy is conserved in the tank model. Thus
numerical approximations of the tank model equations should also conserve total
energy: that is. evaluating the approximate form for the first bracketed term on
the left of Eq. {12-7) at each grid point and summing across the domain should
vield a number that is identical at each time step. Thus simulations that differ
significantly from such mass- and energy-conservation criteria are suspect, and
results from them should be used cautiously, if at all.

12.5.2 Mass and Energy Equations for a Mesoscale Model

In mesoscale models, much more involved conservation relations are used;
however, it is similarly desirable to conserve mass and energy. To illus-
trate the procedure, the hydrostatic, anelastic form of the equations given by
Eqgs. (6-87)~6-90) and (6.93) with o defined by Eq. (6-48) are used to derive
the kinetic energy and mass-conservation relations.
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The shallow-slope, hydrostatic form of Eq. (6-90) [Eq. (6-62)] can be differ-
entiated with time and the order of operation reversed to yield

3 a7 gs—z500

e ar & s o

Integrating between ¥° = 0 and s, and rearranging yields*

, (12-8)

| 5.-1 §—1z s8] 39
ar - _ i %G &
ar |, 55 jr;

9s at
which is the same form as Eq. (11-25) except zg # 0 in Eq. (12-8). The pressure
tendency d7/dt|;, must be specified as a boundary condition [i.e., see after

Eq. (11-22)], and the integrated term in Eq. (12-8) is evaluated using Eq (6-90).
Integrating the right side of Eq. (12-8) over the model domain gives®

1 Da Do Jar ! ; — 7 " . ~
f f — f__(l)( : dzx*di'
DDy Jo Joo ot ) 5—12g

I8 Do _ a1,
Da;[ [ﬂ 7dPdE = =2, (12-9)

D

Values of 30/3t needed at ' = 0, D;, and at ¥* = 0, Dy are obtained from the
assumed lateral boundary condition on f (see Section 11.3.1).

Since from Eq. (11-27) a change of 7 at the surface is equivalent to a change
of mass above that level, T1, in Eq. (12-9) provides the value of the average mass
change per unit area over the model domain. This value of IT_ can be compared
against the integrated value of I . computed directly from Eq. (6-62); that is,

ﬁ b,
¥ DD Hr[ [ Fdidx!,

where

g [ dX
G ___+1—[1

The difference (8/81)(T1,_ — I1,) is proportional to the mass loss.

A kinetic energy equation for the flow parallel to the terrain can also be
derived from the set of equatlons Since i' = u and #* = v from Eq. (6-34),
multiplying Eq. (6-57) by pyit (s — z5)/s and Eq. (6-38) by pyit (s — zg)/s,
adding the two equations, and using the anelastic conservation-of-mass equation,
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-2=2

after multiplying by k = 1(# & + & & ). results in the terrain-following kinetic
energy equation
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where
K.= / _/q / (pr_;.s—_gjs—i)d.f-fd_f'df-‘-,

In deriving Eq. (12-11), the condition that #° = 0 at Zg and s, has been used.
The last term in Eq. (12-11) arises from Leibnitz’s rule.® since s, is a function
of time. Each of the variables in the last term is evaluated at s,.

The first two terms on the right side of Eq. (12-11) are proportional to the
net flow of terrain-following kinetic energy through the sides of the model
domain, and the next term represents the change in kinetic energy from subgrid-
scale effects. The terms involving 87 /%' and 87 /%> are proportional to the
conversion of potential to kinetic energy by cross-isobaric flow, and the expres-
sions containing the gradients of terrain represent the conversion of potential



458 12 Model Evaluation

to kinetic energy through upslope and downslope flow. The next to last term
in Eq. (12-11) (with f) would not appear in a three-dimensional kinetic energy
equation using the complete conservation-of-motion equation (i.e., without the
hydrostatic assumption), since the Coriolis force arises solely because of a coor-
dinate transformation (see Section 2.3) and thus cannot do work. Therefore, to
have a physically consistent terrain-following energy equation, it is necessary
to remove this term in Eq. (12-11) and in Eq. (6-87).

In using Eq. (12-11) to determine the total terrain-following kinetic energy
changes, it is imperative that the approximation technique used to evaluate the
individual terms in that expression be the same as that used in the original
approximate form of the conservation relation [i.e., the approximated forms of
Egs. (6-60) and (6-61)] from which Eq. (12-11) was derived.

The time rate of change of terrain-following kinetic energy can also be eval-
uated directly at each individual grid point and then summed; that is,

K v Pe P s —zo0k
- — d¥dE'dx
b e erenas

Da P §—zg- 055 . .
- dsg 2 12-12
N [n jﬂ po—"k,, L d¥'dx ( )

is used instead of Eq. (12-11) to obtain an estimate of the total terrain-following
kinetic energy change. If the kinetic energy changes computed by the numerical
approximation to this expression and the approximated form of Eq. (12-11)
closely agree, then the modeler can be certain that mistakes, such as coding
errors, are not causing significant sources of unexplained changes of kinetic
energy. Note that since the last term is the same in Egs. (12-11) and (12-12),
there is no need to compute it for a comparison of K and K,.

Anthes and Wamner (1978) discuss the use of kinetic energy budgets in
mesoscale models as a tool to check the model code, as well as to seek addi-
tional insight into the energetics of mesoscale systems. Among their results,
they showed that the flux of kinetic energy through the side walls of a mesoscale
model crucially affects the solutions in the interior. They conclude that because
of the extreme sensitivity of mesoscale model results to domain size and the
form of lateral boundary conditions, studies of the energetics of real-world
mesoscale systems will be very difficult to perform and very sensitive to errors
and small-scale variations of wind, potential temperature, and pressure at the
model boundaries. Figure 12-11 illustrates the magnitude of individual terms as
a function of time in a two-dimensional analog of Eq. (12-11), computed by
Anthes and Warner for strong airflow over rough terrain. Of particular impor-
tance is the large magnitude of the boundary fluxes of kinetic energy through
the west and east boundaries. Even small percentage errors in these terms can
cause serious errors in the results, a conclusion illustrated in Table 11-1. In a
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Fig. 12-11. s#Individual components of a two-dimensional form of the domain-averaged
kinetic energy equation, which is equivalent to Eq. (12-11). (A) Generation of kinetic
energy by cross-isobaric flow, from the terms with ﬁl[é(ﬂ%;’ﬁf‘) — gllo — 5)/sHoz /dx)];
B, and B, are the flux of kinetic energy across the west and east boundaries from the
two terms evaluated from # k|?*'). (B) Net flux across the west and east boundaries
(from B, - B,). (C)} The domain-averaged change of kinetic energy. (D) The dissipation
of kinetic energy by horizontal diffusion (from the term with E‘:]a‘a"'aﬁ"'_.-*af‘,}. Analogs
to the last two terms in Eq. (12-11) were not evaluated. (Reproduced from Anthes and
Warner 1978.)

different study. Tag and Rosmond (1980) discuss energy conservation in a three-
dimensional small-scale (nonhydrostatic} model in considerable detail. Pearson
(1975). Dalu and Green (1980), and Green and Dalu (1980), provide additional
studies of the energetics of mesoscale systems. Avissar and Chen (1993) use a
mesoscale Kinetic energy equation similar to Eq. (12-11) to develop a parame-
terization of mesoscale fluxes for use in larger-scale models.

12.5.3 Momentum Flux

Another useful diagnostic tool for model evaluation involves calculation of the
momentum flux. Used most often in the study of the dynamics of forced air over
rough terrain {e.g., Klemp and Lilly 1978), this is straightforward to calculate.
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To illustrate its evaluation, in the absence of the Coriolis term for two-
dimensional flow, Eq. (4-14) for i = I can be written as
dpyii a a d d ap

= —;?;poﬁj - B—Zpoi'ﬁ = 52P "2 a—zpou"w" e (12-13)

where the conservation-of-mass equation (4.23) has been used. Assuming a
steady state and that @, p, and »”?, far enough upstream and downstream of a
two-dimensional barrier to the flow, are constant, Eq. (12-13) can be integrated
to yield

or

[ polwit + w'u") dx = my, (12-14)

where m, is a constant with dimensions of kilogram per seconds squared.
Equation (12.14) can be written as

o0

f polwoug + Wy + wor’ + w4+ w'n | dx =m, (12-15)

using the definition of a mesoscale perturbation from the domain-averaged (i.e.,
synoptic) value given by Eq. (4-11). For the case where w, = 0 and u, is equal
to a positive constant, Eq. (12-15) reduces to

==
[ polw'u’ + w'u"] dx = m,,
-0

since (8/3z)powit can be written as (d/0z)pew'u’ in Eq. (12-13). Assuming
nonturbulent flow, the equation can be further reduced to

[ powu dx = ms. (12-16)

Voo
The constant m; is less than 0 if the source of the mesoscale motion is the
ground surface and there is no downward reflection or generation of perturbed
flow above the ground. In this situation, the movement of a parcel upward (i.e.,
w' > 0) toward a level of higher potential energy results in a reduction of kinetic
energy (i.e.. u' < 0). The converse is true for the downward movement of a
parcel. Hence w'u’ < 0 is required to satisfy the conservation of total energy.
Equation (12.16) is of the form most commonly applied in the diagnosis of
a mesoscale simulation of airflow over rough terrain. In a numerical model,
u, is equal to a constant, w, = 0, nonturbulent flow can be assumed for an
atmosphere of constant large-scale velocity and static stability, and w'u’ can
be calculated to ascertain whether it satisfies Eq. (12-16). To prevent aliasing
problems (described in Section 10.5.1), however, long-term inviscid calculations
(i.e.. with no explicit or computational smoothing) can be performed only for
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small mountain perturbations where the nonlinear effects are minimal. Klemp
and Lilly (1978) show that for inviscid. isothermal analytic solutions over a bell-
shaped mountain given by Eq. (12-4) with u, equal to a constant and w, = 0,
the momentum flux is of the form

4

Here the definition of ¢ is from Eq. (5-129) and the relation between den-
sity and potential temperature vertical gradients is given by Egs. (5-135) and
(5-136). Figure 12-12, reproduced from Klemp and Lilly, illustrates a compar-
ison of a numerically computed, horizontally integrated momentum flux [from
Eq. (12-16)] for a simulation of airflow with 1, = 20 ms~! over a mountain of
the form given by Eqg. (12-4), along with the analytic result given by Eq. (12-17).
The numerical model was integrated with z Zg,,, = 10 m, and m; was multiplied
by 10° for comparison against the linear solution m; . The results are almost
coincident up to 10 km, thereby providing proof of the fidelity of the numer-
ical model. Above 10 km. the numerical model uses an absorbing layer (see
Section 11.3.2) to mimic the radiation boundary condition of the analytic model.

Another useful parameter that can be calculated from a model of forced air
over rough terrain is the surface drag. This drag occurs because the sloping

—r R a6, T, 5
My, = Tpslf{}:é_—l (E}q = ) = ——pPyls,, TUp- (12-17)
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Fig. 12-12. A plot of m; calculated from Eq. (12-16) from a numerical model result
for a bell-shaped mountain (dashed-dotted line) and m, evaluated using Eq. (12-17)
for the same mountain shape (dashed line), as a function of height for u, = 20 ms~,
Zg,.. equivalent to 100 m, and p; = 1 kgm™. The atmosphere is isothermal, and M
co}responds to my and m; . (Adapted from Klemp and Lilly 1978.)
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terrain is a partial barrier and impedes the large-scale wind flow. The wave drag
for a two-dimensional mountain can be written as
02g

D= .[_i E(EG)E dx, (12-18)

where p is evaluated on 7. The momentum flux [Eq. (12-16)] evaluated at zg is
identical to the surface drag given by Eq. (12-18). The integrand of Eq. (12-18)
arises from the force per unit area exerted on a two-dimensional mountain in
the x direction.” For a mountain that is symmetric around its crest, for example,
an asymmetric pressure field will result in a value of D that is not equal to
0. Moreover, since total energy must be conserved, the generation of internal
gravity waves by a mountain must result in the extraction of energy from the
ground.

From the Lilly and Klemp (1979) solution to Long’s model presented in

Section 5.3,
2
, [ 0zg, \\ 9z
Dy = _pu“éf_ U(:G.- - (T))-a—f dx, (12-19)

where the subscript “LK" indicates that it is from the Lilly-Klemp solution
to the Long model. Lilly and Klemp (1979) contrast the drag [Eq. (12-19)]
from their solution to Long's equation for an isothermal atmosphere with
constant velocity using a nonlinear bottom boundary condition, with the drag
[Eq. (12-17)] computed for a linear lower boundary condition. Among their
results, they found that the drag was enhanced compared to linear theory for
mountains with a gentle upslope and steep downslope terrain.

12.6 Comparison with Observations

The validation of a model using observations can be cataloged into two gen-
eral classes: (1) subjective validation and (2) point and pattern quantitative
validation. In subjective validation, one or more of the predicted fields are qual-
itatively compared against observations of a related phenomena. Pielke (1974a),
for example, compared the simulated vertical motion at an elevation of 1.22 km
over south Florida with the observed locations of rain showers as seen via a
10-cm radar located in Miami. The justification for the comparison is that the
primary control for rain shower development over south Florida during a syn-
optically undisturbed summer day is the location and intensity of the low-level
convergence (Pielke er al. 1991). Since 1.22 km is approximately at the top of
the planetary boundary layer, the predicted vertical velocity at that level yields
an appropriate estimate for low-level convergence. Figure 12-13 illustrates one
such comparison for June 29, 1971, 9-1/2 hours after sunrise. As evident in the
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figure, the wishbone pattern of the rain showers 1s closely correlated with the
distribution of vertical motion at 1.22 km.

Point-to-point correspondence between model prediction and observation of
the same meteorological parameter provides a quantitative test of model skill.
Keyser and Anthes (1977) use a technique in which if ¢; and ¢, are individual
predictions and observations at the same grid point, ¢, and ¢y, are the average
values of &; and &, _ at a level. and #N is the number of observations, then

E= {%{éf - é)'—“\} B

=N 172
Eyp= {Z[(éf — &)~ (b, — éaf_ts_)]i,f#w] , (12-20)

- 172
Oobs = {Z((b'\ - (br-:_,_\_\]:_."#.\'_} ,

and

-

N I
o= {Z(é; - ac.)?,.-'#m-'}

can be used to determine the skill of the model results. The parameter E is
the root mean square error (RMSE). Eyg is the RMSE after a constant bias
is removed, and ¢ and o, are the standard deviations of the predictions and
the observations, respectively.® Keyser and Anthes found that the RMSE can
be significantly reduced when a constant bias is removed. Such a bias, they
suggested, could result from incorrect specification of the initial and/or bottom
and lateral boundary conditions.

Skill is demonstrated when (1) 0 = O (2) E < Oy, and (3) Eyp < O
Piclke and Mahrer (1978) applied these criteria to their simulation of the sea
breezes over south Florida to show that the model could accurately predict wind
velocity and temperature at 3 m. Temperature predictions over the entire day-
light period, as given in Table 12-1, for example, had a ratio of Eyg/ 0y = 0.6
Segal and Pielke (1981) have applied this analysis tool over the Chesapeake
Bay region to evaluate the accuracy of a mesoscale model prediction of biome-
teorological heat load during the daylight hours. For temperature, for example,
Segal and Pielke found that £/, = 0.53 with o, = 2.12°C and 0 = 2.24°C.
This evaluation technique has also been applied by Shaw et al. (1997) in the
modeling of a Great Plains dryline.

One problem with point-to-point validation, however, is that spatial and tem-
poral displacement of the predicted from the observed fields could yield a poor
verification according to Eq. (12-20), even though the shape and magnitude of
the simulated pattern could be almost exact. Although not yet attempted in a
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TABLE 12-1

Error Analysis of Model-Predicted Winds and Temperature Using Eq. (12-20) for an
East-West Cross-Section From Naples to Just North of Fort Lauderdale, Florida
{See Figure 12-13 for the Location)

Variable £ Eiq o Tt Eg/E Eig/ Oy
i{ms') 3.1 3.1 1.2 22 1.0 14
Tms™") 2.2 12 0.2 1.2 0.5 1.0
T (*C) 5.1 28 39 4.6 0.5 0.6

From Prelke and Mahrer 1978,

mesoscale model. rigid translation of the predicted results on the model grid
(e.g.. in one-grid-interval increments) relative to the observations, and recom-
putation of £ and Ey in Eq. (12-20). offers one possibility for considering the
effect of displacement on the accuracy of the results.

A guantitative measure of a2 model’s ability to predict observed meteorological
fields. such as displayed in Figure 12-13, is also possible using concepts of set
theory. Pielke and Mahrer (1978) applied this technique to determine the degree
of correspondence between predicted low-level convergence zones (as estimated
by the vertical velocity. w, at 1.22 km) and the locations of radar echos over
south Florida. Two major questions were answered using this technique:

[. What fraction of the predicted conversence zones are covered by
showers?

2. What fraction of the showers that occur lie inside of the predicted con-
vergence zones?

To illustrate the procedure of analysis, let D D, be the model domain area, let
C be the area of the model domain covered by predicted convergence of a given
magnitude or larger. and let R be the area of the model domain covered by radar
echoes of a specified intensity and greater. With these definitions, the following
apply:

I. Fz = (CNR)/R is the fraction of echoes in convergence zones with
values equal to or greater than a certain value of convergence (where the symbol
T is an interscction in set theory symbolism).

2. F_,= (/D D, is the fraction of the model domain covered by a specified
value of convergence and larger.

3. K =(CNR)/C is a measure of the fraction of convergence zones, of a

given magnitude and larger. covered by echoes.

Capability is demonstrated if F./F_ > 1. since the ratio would be expected
to be unity by random chance. A necessary condition for perfect skill is
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F. =1, since in that case the entire convergence zone would be covered with
echoes.’

This methodology is illustrated schematically in Figure 12-14 for an ideal-
ized distribution of radar echoes and convergence. Results for an actual model
simulation of a sea breeze over south Florida (for July 1, 1973) from Pielke and
Mahrer (1978) are given in Table 12-2, where the ratio of F;/F,, was greater
than unity in 26 out of 30 categories. The ratio was larger than 2.0 in 20 of the
categories. In contrast, F, was much less than unity. indicating that most of the
convergence zones were not covered by rain showers—a result indicating that
sea-breeze convergence alone does not completely explain the spatial variability
of radar echoes over south Florida in the summer.

The application of this analysis procedure to other meteorological variables,
such as cloud cover and rainfall, is straightforward. Simpson er al. (1980), for
example, quantitatively examined the skill of the mesoscale model predictions
over south Florida on several days during the summer to predict locations of
shower mergers as seen by radar. This technique can, of course, be applied to
other geographic areas and to different mesoscale systems.

Anthes (1983) provides an effective summary of additional evaluations of
model capability. These include

CFA

IS=———7r—,
FA+0A—-CFA

where TS is called the “threat score,” CFA is the correctly forecast area, FA is
the forecast area. and OA is the observed area. These quantities are equivalent
to CFA= CNR. FA=C.and OA = R used to obtain Table 12.2.

Fig. 12-14. A schematic illustration of the juxtaposition of a field of radar echoes R
and low-level convergence of a given magnitude and larger C. The two fields are coin-
cident at C N R. The quantity F. = (C N R)/C indicates the fraction of a convergence
zone covered by radar echoes, and E/F,, = [(CN R)/R]/(C/D,D,} measures the ratio of
echoes within the convergence zone to the fraction of the model domain covered by that
magnitude of convergence and larger.
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TABLE 12-2

The Fraction of Convergence Zones F, of a Given Magnitude and Larger, Covered by
Radar Echoes, and the Ratio of the Fraction of Echoes in Convergence Zones of a
Given Magnitude and Larger to the Fraction of the Model Domain Covered by that
Magnitude of Convergence and Larger; This Ratio is Given by F/F,.

. F, F/FR,
Time
{EST) {1) {ii) {111} {iv} (v} {1) (1) (1i1) (v} (v)
1200 0.0 1.31 2.67 0.0 - -
1300 0.0 2.1a 317 0.20 - -
1400 0.0 1.98 278 350 00 -
1500 0.0 225 256 329 6.00 -
1600 0.0 2.44 2.95 200 0.0 -
1700 0.0 2.49 316 3.00 2.33 -
1800 0.0909 2.19 3.07 375 3.75 0.10
1900 0.0 1.06 1.43 1.67 1.67 -

Co “at 1.22 km. For 1200-1800 EST. (i) @ = O cm 5", (i) @ = 8
cm vy =32 ems™!. For 1900 EST (i) & = 0 em 57", (i1}
i e s T (v o= 5B em s | (From Pielke and Mahrer 1978}

The threat score can also be defined as
TS=C/(F+0-C).

where C is the number of locations in which a forecast is defined to be correct,
F 1s the number of locations for which a forecast is made, and O is the number
of locations that observed the forecast quantity.

A bias score. B. can be defined as

B=FA/OA
and by
B=F/O.

Colle et al. (1999) discuss the changes in bias scores as the spatial grid incre-
ment in the MM35 model is made smaller.

To assess model skill. Mielke (1984, 1991) introduced a new statistical eval-
uation scheme called the Multivariate Randomized Block Permutation (MRBP)
procedure. His approach has the advantage in that regression relations and com-
parisons between model and observed data is based on the absolute value of the
differences. rather than on the square of the distances.

A summary of the MRBP technique is provided in Lee er al. (1995) and
is reproduced here. As described by Sheynin (1973), the initial known use of
regression by Bernoulli (circa 1734) for astronomical problems involved the
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least sum of absolute deviations (LADs) regression. The distance function asso-
ciated with LAD regression is the common Euclidean distance between observed
and predicted response values. Further work in developing LAD regression was
accomplished by Boscovich (circa 1753), Laplace (circa 1789), and Gauss (circa
1809). Sheynin (1973) points out that Gauss developed linear programming
for the sole purpose of estimating the parameters associated with LAD regres-
sion. Gauss consequently had to introduce the least sum of squared deviations
(LSD) regression (also termed least squares regression). simply because calcu-
lus provided an efficient way to estimate the parameters associated with LSD
regression. Thus LSD regression is a default procedure that was introduced only
because Gauss lacked appropriate computational equipment for solving linear
programming problems. The American mathematician and astronomer Bowditch
(circa 1809) immediately attacked LSD regression because squared deviations
unduly overemphasize questionable observations in comparison to the absolute
deviations associated with LAD regression (Sheynin 1973).

The MRBP procedure developed by Mielke (1984, 1991) is based on the
LAD regression. Specifically, MRBP randomly permutes the observed vector

of values (X) relative to the model-predicted vector of values (X) with the
agreement measure, p, defined by
pos — &

p= s (12-21)
Hs

where 8 = (1/n) X1, i)f,- - );’l is the average distance between n-observed and
model-predicted data pairs and g4 is the average value of & over all n! permu-
tations. Note that the Euclidean distance between vector value pairs is used to
evaluate the agreement measure, and that good predictions are associated with
relatively small values of 8. The LAD regression used here is both multivari-
ate (i.e., n vectors of two or more dependent variables may be involved) and
nonlinear. The remaining problem is to determine whether a realized value of 8
for observed and model-predicted values is due merely to chance. The standard
measurement for this purpose is the P value; that is, the probability of obtaining
a value of & that is not larger than a realized value of & given that each of the
n! values of & occurs with equal probability. Although the exact calculation of
all n! values of 8 is seldom computationally feasible, an approximate P value
is based on the standardized test statistic given by

T = (8~ us)/ 0% (12-22)

where o is the exact standard deviation of 8 and T is approximately distributed
as a Pearson type III distribution (Mielke 1984, 1991). Examples of the use of
the MRBP evaluation technique in mesoscale modeling are reported in Cotton
et al. (1994), Lee e al. (1995), and Mielke and Berry (2000).
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127 Model Sensitivity Analyses

Stein and Alpert (1993) and Alpert er al. (1995) have introduced a very
effective analysis procedure for assessing model sensitivity to the alteration of
model formulations. These alterations, for example, could include integrating a
model with surface latent turbulent heat fluxes excluded. as contrasted with a
control run in which these fluxes are included.

When one alteration is contrasted with the control run, simply subtracting the
two model runs at equivalent times of integrations is the obvious procedure for
assessing the model’s sensitivity to the alteration. However, when two alterations
are evaluated (e.g., surface turbulent sensible heat fluxes are also excluded), the
interaction between the two alterations must be assessed. Only if the alterations
are not interactive {i.e.. “orthogonal”™) to each other would running the two alter-
ation experiments and then adding them together provide the model’s sensitivity
to the combined effect of both alterations.

The Stein—Alpert analysis procedure includes the effect of the interactions.
Following this analysis procedure. if £, is the control and f,. f;, and f; represent
three alteration experiments, then

f: = f‘. - fn-
= fa— fon
f::« = fi— fo.

where f,, f_ and £, represent the individual effects of making just one alteration
to the control. In the past, this is where most sensitivity experiments ended.
However, as shown by Stein and Alpert,

f!: = JF“. - (.f; _'_f_"\) +f0;

fa=fe—(A+ )+ 1

represent the interaction between each pair of alterations when two alterations
from the control are made in the same experiment. When these alterations are
made in the same experiment, the three-way interaction effect is

fim=fa— o+t fa+f)+\+AH+A) - fo-

Examples of uses of the Stein—Alpert sensitivity analysis procedure are reported
in Alpert er al. (1995, 1996a. 1999), DeRidder and Gallee (1998), Romero
er al. (1998. 2000), Eastman (1999), Grossi er al, (2000), and Eastman er
al. (2001).
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Notes to Chapter 12

1. The other type of sensitivity study involves changes in the physical parameters within the
model (e.g., initial wind speed, Coriolis value, ground roughness).

2. The solution to this diagnostic differential equation can be obtained using the procedure of
sequential relaxation discussed in Section 10.3. Haltiner and Williams (1980, Chap. 5) also present
procedures to solve Eq. (12-3) using direct matrix procedures. Mason and Sykes (1978) discuss
the use of a direct method to solve for pressure in a Cartesian coordinate framework even when
topography exists in the model domain.

Also, in deriving Eq. (12-2), the velocities on the right of Eg. (4-14), were assumed to be the
velocities obiained when the complete nonhydrostatic pressure, py + R, was used (e.g., as available
at the beginning of a time step). This assumption does not have to be made, however (it simply
results in more terms in Eq. (12-3) if it is not made). As long as changes of R’ at a erid point
between time steps are small relative o the magnitude of R, it is a reasonable assumption.

3. If & = 0 at the boundaries, then du'/dx and du'/dt must also be identically O at these
locations. Therefore, from Eg. (5-17), gdh/dx = 0 at the boundaries, so that no slope to the fluid
is permitted at the walls. Numerical approximations to the tank model equations with rigid walls
must use this boundary condition on h. recognizing that #h/dx = 0 at the boundary does not mean
that Ah/Ax = 0 between the boundary and one grid point inside when Ax is finite.

4. As used here and in Section 6.3. s is a constant, usually defined to correspond to the ini-
tial value of s, as defined by Egs. (11-13) and (11-19) and following material. The variable s,
Lorresponds to a movable potential temperature surface.

As shown by Dutton (1976:144), differential area on a constant ¥' surface can be written as
dS = |r?v GdFdF'. For the terrain-following coordinate system defined by Eg. (6-48), \X_ =
(s — z5)/s [from Egs. (6-32) and (6-51)] and for small slopes [7%} = s/(s — 25} [from Egs. (6-33)
and (6-31)].

6. Leibnitz’s rule is given in such sources as Hildebrand (1962:360) and Durtton (1976:115).

7. The change in force per unit area in the x direction can be written as p(zg)cos aln/Ax,
where « is the terrain slope and An is distance along the slope. Since Ancosa = Az, at z = Zg,
the change in force per unit area in the x direction becomes p(zg)Azg/Ax. In the limit as Az; and
Ax approach 0, and integrating from + to —oo yields Eq. (12-18).

8. The use of RMSE analysis to examine the skill of model results for different sets of initial
conditions was also discussed in Section 11.2 associated with Eq. (11-5).

9. Since R can be larger than C, F, = 1 is not a sufficient measure of perfect skill.

Additional Readings

Several studies provide additional examples of model evaluations.

Cox, R., B. L. Bauer. and T. Smith. 1998. A mesoscale model intercomparison. Bull. Amer. Meteor.
Soc. 79, 265-283.

Hanna. S. R., and R. Yang. 2001. Evaluations of mesoscale models’ simulations of ncar-surface
winds, temperature gradients, and mixing depths. J. Appl. Mereor, 40, 1095-1104.

Snock, J. S.. P. A. Stamus. J. Edwards, Z. Christidis, and J. A. McGinley. 1998. Local-domain
mesoscale analysis and forecast model support for the 1996 Centennial Olympic Games. Wea.
Forecasting 13, 138-150.



Problems 471

Problems

1. Using the one-layer tank model programmed in problem 9 in Chapter 10, use the equations
in Section 12.5.1 to compute the time rate of change of the mass and energy budget of the model
by summing over the grid points of the model and then compare 1o what they should be from the
requirement that k is a constant and Egs. (12-3) and (12-7). Use cyclic lateral boundary conditions.

2. Repeat problem ! with constant inflow and gradient outflow lateral boundary conditions.

3. Repeat problem | with constant inflow and radiative outflow lateral boundary conditions.

Select a mesoscale model and describe which of the model evaluations reported in this chapter
have been used.

4.



