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Planetary boundary layer and turbulence
parameterizations

5.1 Introduction

We have seen how the various properties of the land surface can influence the
fluxes of energy that occur in the atmospheric surface layer. Now that these
boundary conditions have been described, the next step is to determine how
these energy fluxes influence the evolution of the atmosphere. This influence
first occurs within the planetary boundary layer (PBL).

The planetary boundary layer is that part of the troposphere which is
influenced directly by the presence of the Earth’s surface, and responds to
surface forcing with a timescale of an hour or less (Stull 1988). Thus, the land
surface and the boundary layer are intimately tied together. The PBL can be as
shallow as a few tens of meters. and as deep as several kilometers (Fig. 5.1). We
previously learned in Chapters 2 and 3 that the values of temperature and
specific humidity within the surface layer have a profound effect on the surface
sensible and latent heat fluxes, since they are used in determining the potential
difference between the soil -vegetation-land surface and the atmosphere. Now
itis seen that the boundary layer responds to these fluxes over very short time
periods. It also is important to recognize that turbulence, the irregular fluctua-
tions that occur in fluid motions, is the dominant mechanism by which surface
forcing is transmitted throughout the boundary layer.

One could arbitrarily say that the evolution of the boundary layer begins
with sunrise. Just before sunrise the boundary layer is stable, as indicated by
the potential temperature increasing with height (line “3” in Fig. 5.2). At
sunrise, the radiant energy reaches the Earth’s surface and begins to warm
the ground (line *97). Heat and moisture fluxes from the ground to the atmo-
sphere become larger. The boundary layer responds to these fluxes by slowly
deepening as thermals (bubbles of buoyant air that originate at the surface
and rise into the boundary layer) reach the top of the boundary layer and
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Figure 5.1. Schematic of the boundary layer evolution during days 33-33
from the Wangara experiment. During the daytime the mixing layer grows to
depths above 1 km and is characterized by high levels of turbulence and a
shallow and unstable surface laver. As the sun sets. the level of turbulence
drops precipitously, leaving a residual layer behind. The surface inversion
laver grows throughout the nighttime hours, influenced by episodic
turbulence and radiational cooling. From Yamada and Mellor (1975).

overshoot their level of neutral buoyancy. Vertical velocities within thermals
canreach Sms™ ', although values of I- 2ms™' are more common (Stull 1988).
While thermals come in all shapes and sizes, the largest thermals typically have
a horizontal length of ~1.5 times the boundary layer depth and are present
over slightly less than half the boundary layer at any given time (Young 1988).
Thermals are smaller early in the day, when the boundary layer is shallow, and
become larger as the boundary layer deepens.

By the middle of the day, the boundary layer typically is near its maximum
depth and often approaches a well-mixed structure (line 127 in Figs. 5.2 and
5.3). This occurs when turbulence is vigorous and it tends to uniformly mix the
boundary layer, especially the potential temperature. Below the mixed layer is
the surface laver. in which the potential temperature increases towards the
warmer ground surface.

Above the mixed layer is the interfacial layer or inversion layer, in which the
potential temperature increases with height. This layer separates the turbulent



140 Planetary boundary layer and turbulence parameterizations

e e T 77
f/_—\:\ ~ LA

| AT
e - - et
o 5 5 10 15 20
n (K} K
——Day 33—+ Day 34—+ Day 35— 0800, day 33 to 0300, day 34 0900, day 34 to 0300, day 35

Figure 3.2. Observed boundary layer virtual potential temperature (6,) and
vertical and temporal variations taken during the Wangara cxperiment over
Hays. Australia. Isolines on the left-hand plotare 8, - 273 and shown in units
of kelvin. Times indicated on the right-hand plots are local. From Yamada
and Mellor (1973).
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Figure 5.3. Ilustration of a well-mixed boundary layer. The potential
temperature is nearly constant with height within the mixed layer, and
increases both below and above it. The heat flux profile is lincar, with the
largest value just above the ground and decreasing to zero at the top of the
interfacial or inversion laver. From Deardorff (1979).

boundary laver from the less turbulent free atmosphere. The inversion layer is
where entrainment occurs. the process by which the rising thermals overshoot
their level of neutral buovancy, owing to their upward momentum, and then
sink back into the boundary laver bringing wisps or curtains of air from above
the boundary laver into the boundary layer. Because of the vigorous turbu-
lence in the boundary layer, the buoyant air from above is quickly mixed and
becomes part of the boundary layer.

Since potential temperature increases with height, entrainment and surface
sensible heat flux both act to increase the potential temperature of the boundary
laver and help support the well-mixed structure of the boundary layer. However.
moisture and momentum are not necessarily well mixed within the boundary
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Figure 5.4. Vertical profiles of potential temperature (#) and specific humidity
(¢). scaled by the surface value, at 1400 local time from Sterling, Colorado.
averaged over 33 cloud-free days. Thin lines are the standard deviations,
while 8, is the surface value of potential temperature. Note that while the
potential temperature is nearly constant with height below the boundary
layer top near | km, the specific humidity clearly decrcases with height in
this same laver. From Mahrt (1976).

laver (Fig. 5.4). Since the free atmosphere above the boundary layer typically is
drier than the boundary laver, moisture in particular often tends to decrease with
height in the boundary laver. Indeed, Mahrt (1991) characterizes boundary lavers
into moistening and entrainment drying regimes, with moistening regimes occur-
ring under large surface evaporation and large mean wind shear. Entrainment
drving regimes are most often associated with small surface evaporation and
unstable conditions. The diurnal evolution of the boundary layer often begins
with a moistening regime in the moming, Lransitioning to an entrainment-drying
regime later in the day. The boundary layer momentum field is even more
complicated. Momentum may be well mixed within the boundary layer, particu-
larly under quiescent synoptic-scale conditions, but momentum is strongly influ-
enced by the larger-scale pressure gradients and often does not appear well mixed.

The dayume convective boundary laver is a complex phenomenon
(Fig. 5.3). It is governed by turbulent processes, but also can be filled with
more organized secondary features that interact with the turbulence (Brown
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Figure 5.5. An artistic rendering of the daytime convective boundary layer, in
which turbulence and organized thermals interact to vertically mix the layer.
Note the entrainment of air from the frec atmosphere into the boundary
layer, and the horizontal changes in boundary layer depth. From Wyngaard
(1985).

1980). These secondary features often take the form of boundary layer rolls,
which act to help transfer the heat flux more efficiently (Stull 1988). Rolls are
most often observed via satellite as cold air moves over a warm surface and
creates lines of clouds (cloud streets), although clear air radar data indicate
that roll-like circulations are a regular part of the boundary layer in the
summertime when surface heating is strong. And, of course, rolls and other
secondary circulations can occur at night just as well as the day, and occur
throughout the year. During winter, boundary layer rolls are even thought to
produce snowfall from time to time (Schultz et al. 2004).

So far this discussion makes it sound as though boundary layer evolution is
governed only by the sensible heat flux from the ground surface. However,
while buoyancy often is a main driver of daytime convective boundary layers,
wind shear also generates turbulence and definitely plays a large role in
boundary layer development. Schneider and Lilly (1999) investigate the day-
time PBL just to the east of the Rocky Mountains and find that a combination
of buoyancy and shear-produced turbulence controls the PBL evolution. The
turbulent transfers in the upper portion of this PBL are tied to a complex field
of interwoven vortical structures (Fig. 5.6) that are episodic and shift in
response to local shear and buoyancy profiles. They conclude that a number
of the common simplifying assumptions and scalings used for the boundary
layer are inappropriate when describing this complex behavior. It is clear from
their results that the boundary layer is not a simple system.

When clouds do not occur in the PBL, the boundary layer typically is fully
turbulent throughout its depth during most of the daytime hours. When clouds
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Figure 5.6. Visualization of wind vectors and isosurfaces of vorticity from
22 June 1984 during the Phoenix IT experiment as derived from radar data.
The reader is looking down on the analysis area and towards the north. The
vorticity isosurfaces of 15 x 10 s ! show many vortical tubes within the
turbulent flow, and these grow and decay over time. From Schneider and
Lilly (1999).

are present the turbulence can be modified by the cloud circulations and some-
times the turbulence in the cloud becomes decoupled from the turbulence in
the boundary layer below the cloud, especially when clouds completely cover
the sky. Observations indicate that turbulence is an intrinsic part of the PBL
and the largest eddies give a turbulent flow its distinguishing characteristics
(Wyngaard 1983), so the effects of turbulence must be included in any attempt
to understand and/or model the PBL. The lack of a complete understanding
of a physical process, such as turbulence, does not mean that it cannot be
modeled with some degree of confidence. One just needs to recognize the
limitations of the models that are produced and selected for use.

As perhaps suggested by the results from Schneider and Lilly (1999), the
nocturnal boundary layer, lacking the controlling influence of a strong surface
buoyancy flux, is quite complex (Fig. 5.7). As the sun sets, the heat fluxes from
the surface are reduced and the air near the ground surface begins to cool as
radiational cooling dominates the surface energy budget. Potential tempera-
ture again increases with height, and wind shear is the main source for
generating turbulence. Thus, turbulence in the nocturnal PBL is often inter-
mittent. The air above the surface inversion layer is the residual from the
daytime convective boundary layer. In addition, drainage flows occur very
near the surface owing to variations in elevation, and gravity waves may
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Figure 5.7. An artistic rendering of the nocturnal boundary layer, in which
turbulence is generated by the mean vertical wind shear and gravity waves are
superimposed upon the flow. Note the presence of a nocturnal wind jet at the
top of the thin turbulent laver. From Wyngaard (1983).

develop within the stable boundary layer and further complicate the flow.
Wyngaard (1985) nicely outlines the delicate and precarious balance between
turbulence generated by the mean wind shear and its dissipation from viscous
effects and buoyancy.

The nocturnal boundary layer also is well-known as a breeding ground for
low-level jets. A low-level jet is a wind speed maximum that occurs in the
lowest few kilometers of the atmosphere. These jets are observed worldwide,
are important to the horizontal and vertical fluxes of temperature and moist-
ure. and often are associated with the development and evolution of deep
convection (Stensrud 1996). While low-level jets are observed during the day-
time and can be caused by a number of different mechanisms (see Stensrud
1996). they are strongest and most commonly observed at night. One mechan-
ism for producing low-level jets is a diurnal variation of eddy viscosity as
discussed by Blackadar (1957). During the daytime, the boundary layer is
strongly coupled to the surface layer and frictional effects cause the boundary
layer winds to be subgeostrophic. When turbulent mixing ceases and a shallow
nocturnal boundary laver begins to develop. the winds above the nocturnal
inversion are decoupled from the surface laver and are no longer in balance.
This imbalance between the Coriolis and pressure gradient forces induces an
inertial oscillation of the wind that produces a wind speed maximum approxi-
mately 6-8 h after turbulent mixing ceases (see Hoxit 1975). Low-level jets are
not only important to weather and climate, but also are used by birds and
insects Lo assist in their migrations (Drake 1985).
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Figure 5.8. Depiction of two vastly different elevated residual layers being
created. with the environmental wind blowing from left to right. Laver B is
dry adiabatic, well mixed. and has low relative humidity. This layer is
advected over layer D, forming an elevated residual laver (C). Layer D in
this case is a moist boundary laver. Laver A, assuming that the convection is
widespread and long-lived, is moist adiabatic and has high relative humidity.
Thus, the airmass over layer D has a three-layer structure that is defined by
boundary layer processes (active or past) over much of its depth. From
Stensrud (1993).

The contrast between daytime and nighttime PBLs is dramatic, vet both
must be represented within boundary layer schemes. Owing to the complexity
of the boundary layer. the parameterization schemes used in operational
forecast models and even most research models are focused upon representing
the evolution of the mean boundary layer state through the diurnal cycle and
include the effects of turbulence indirectly.

The evolution of boundary layers is important not only because these layers
largely determine the characteristics of the conditions we live in each day (how
hot or dry, and how windy it will be), but also because boundary layers over
elevated terrain can be advected over regions with lower terrain. and thereby
influence the development of other boundary layers (Fig. 5.8). This processisa
frequent occurrence over central USA (Carlson er a/. 1983: Lanicci and
Warner 1991), and likely anywhere else downwind of mountain ranges.
These boundary layers that are advected off elevated terrain are called elevated
mixed layers or elevated residual lavers. since their potential temperature
profiles are often well mixed. These layers have a large effect on the convective
available potential energy and often are seen within the environments of severe
weather. This only further emphasizes the importance of parameterizing
boundary layers correctly.

The evolution of the boundary layer often sets limits on the types of atmo-
spheric phenomena that can be produced on a given day. Boundary layers that
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are shallow and moist may produce thermals that are too small to reach their
level of free convection and produce deep convection. However, under the
same conditions, boundary layers that are too deep may become too dry from
entrainment and thereby remove any possibility of deep convection. Thus,
another reason why boundary layers are important to weather prediction is
that the potential for deep convection is closely tied to the boundary layer
structure. It is well-known that deep convection strongly influences numerical
weather prediction from very short-range forecasts to climate predictions.

While the equations of motion can be applied directly to turbulent flows, the
models most appropriate for this application would need an exceedingly small
grid spacing (of the order of 50 m or less). and there would still be eddies that
would not be represented on the model grid. The effects of these subgrid
eddies still need to be accounted for in some way, which usually is based upon a
statistical approach to the eddy effects. A useful technique called Reynolds
averaging is now outlined that sets the mathematical stage for looking at how
turbulent flows influence boundary layer development.

5.2 Reynolds averaging

We begin the study of turbulent effects with the basic equations of motion and
statistically average over the smaller eddy sizes. Each dependent variable in the
equations of motion is assumed to be represented by a mean and a perturba-
tion from the mean as defined by 4 =4 + «'. For example, assume there are
two variables 4 and B, both defined as a mean quantity plus a perturbation.
When they are multiplied together, what happens when they are averaged over
some time period? The result is

A B=A~+d)(B+bV)=AB+ AV +Bd + a'b' = AB +d'¥'. (5.1)

since the perturbation terms ¢’ and 4', even when multiplied by a constant such
as A, average to zero over the given time period by definition. However, when
the perturbation terms are multiplied together, the end result is not necessarily
zero. The last term on the right represents the influence of the eddy motions.
Thus, even though the evolution of the mean quantities is of primary interest,
the eddies clearly play a significant role in determining how these mean
quantities change. The process of separating a given variable into a mean
and a perturbation component, and then averaging over time, is called
Reynolds averaging.

When dealing with the full equations of motion, instead of this simple two-
variable example of Reynolds averaging, using summation notation 1o write
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the equations is very helpful in simplifying the derivations. Summation nota-
tion is a compact way to represent several different equations in one. Define

x; as a generic distance, with x; = x,x» =y, x3 =1z

W

=k

u; as a vector, with vy = u,us = v, 13

&; as a unit vector, with §; =7.6, =/.6

i

and
émn as the Kronecker delta which equals 1 when m = n and zero otherwise.
The alternating unit tensor is defined as

+1. if i,j.k are in ascending order
g = & —1. if i.j. k are in descending order
0, otherwise,

where an ascending order means that the values of ik are in a sequence of 1, 2, 3,
or2,3,1.0r3.1, 2. Descending order is the opposite, such as 3,2, 1,0r2, 1, 3, or
1. 3, 2. The alternating unit tensor is zero if any of the values of jjk are the same.
The summation notation also requires the application of two basic rules.
The first rule is that one sums on repeated indices when they appear in two
quantities that are multiplied together. The second rule is that all indices take
on the values of 1. 2, and 3. For example, a single term in summation notation
such as
o 5] o6 H of  of o <
rf,-azu;a—x_]—u:a_—x_:*ugazua—:—l‘a—y—;—u‘&. (3.2)
which allows us to combine a number of separate terms and even equations
into a very compact format.

5.3 Turbulence closure

To explore the role of turbulence in the evolution of the planetary boundary
layer, the Boussinesq equations of motion are used (Dutton and Fichtl, 1969).
The momentum equations are written in summation notation as

Ou; Ou; e, . 1dp & u <
PR p— (a ——Eg) Tjogjllf—igﬁ i Uaxf . (33)

The next step 1s to expand each variable into a mean and a perturbation, where
the perturbations are assumed to represent the effects of eddies, or turbulence,
yielding
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Now all the terms are multiplied out and separated to obtain

ou; ou. _du, Ol , it , Ot
o o Uox w dx; - Yoy 7 Ox;
(‘)q i ol
B f)\ 27V Ixf?
(5.5)

This equation represents the evolution of both the mean and the turbulent
portions of the momentum equation. But only the evolution of the mean
portion is of interest. which is what the models predict, so we average over
the entire equation. This yields

Jii; i ,au_f- ) . _ 1op i
T U = —0ng + feply ———;f V—s. (5.6)
ot dx; 1 ox; T pdx ax;

How does this equation differ from the original Boussinesq equation for
momentum? There are two changes apparent. One is that the term with the

perturbation virtual potential temperature, which represented the effects of

buoyancy. has disappeared. The second change is that a new term, w(Ju;/ 0x;),
has been added. This new term represents the advection of turbulence by
turbulence.

It would be helpful to write the turbulence advection term in a more uselul
form. If the atmosphere is assumed to be incompressible in the boundary layer,
1.e. assume that the shallow Boussinesq approximation is valid (which for the
boundary layer is a pretty good assumption), then

Ju; di,

If we again average over time, this results in

ot
dx;

— 0. (5.8)

and since
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o Ou,
L JL=09. (5.9)
dx; Ox;

then (3.8) and (5.9) require that

g;

=0 (5.10)

]
-t

Thus, both the mean wind and the perturbation wind components dare incom-
pressible. If the divergence of the perturbation wind is multiplied by any
quantity, even a perturbation, then it is stll zero since 1t must always be
zero. From this knowledge. it is apparent that

ity wou.  uou  uo 5.11)
A e S il S el 5.
ax; dx; Ix; Jx;

Using this result to rearrange the terms in the equation for the time rate of
change of the mean momentum. after Reynolds averaging, gives

din;  _ diy ) . 1 Op P, Ouar)
— +Ui—— = —pg T+ J&pl — oo TV -

o1 dx; e 7Oy ("J_\'f dx;

(5.12)

The last term on the right-hand side of this equation is called the Reynolds
stress (covariance) term. Now, numerical models predict the mean variables,
but what about this Revnolds stress term? Since it is not predicted explicitly,
there are two options. First. an empirical relationship can be derived between
this term and known model variables (parameterize). Second, additional
equations can be derived to predict the Revnolds stress term explicitly.

Recall that we began with the Boussinesg equation for momentum. and then
divided each variable into a mean and a perturbation component. If we now
begin with the equation that represents the evolution of both the mean and
turbulent portions of the momentum equation. then we can subtract off (5.6)
for the mean and the result is an equation for the time rate of change of a
turbulent gust. This process vields

o, ol L Ot , g \ T ) & 0(£f§l{;]

o W I, + rd—\ - U o, 3 (gt_ g — Jegu; — SOy VW + m@x_; .

(5.13)

To develop additional equations to predict the Reynolds stress term expli-
citly. an equation for the time rate of change of 171/} is needed. Therefore, using
the equation for the turbulent gust, and noting that one can change j to k in the
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equation since when using summation notation all indices take on the values
1, 2, and 3, 1t is found that

Ouu,) 0w, Ouj

ot i o 4 o (5.14)

So to obtain the evolution of the Reynolds stress term, simply multiply the
equation for the turbulent gust by uj to produce the second term on the right-
hand side of the above equation. The first term on the right-hand side can be
determined by taking the equation for the turbulent gust, changing all the
i-indices to k-indices and then multiplying by «,. The end result is

Oupg)  _ 0(uag) ) ity 1 z)a“* i)
o oy, - Wy T My T oy

+ % (803348, + 6510,8,) + f ewstipd, + eyptfd
L|o(phw,) o) [0 Ou

_ n _ /s
5| ox; oy T \ox, " ox

. c) (u’uﬁ) sy Al Ou, ]

O Toox (5.15)

This represents nine different equations, including equations for
Wi uV ' w Y YW, and whi'. However, the total number of equations is
reduced to six owing to symmetry (e.g., /v = V).

Equations for the mean momentum variables and for the Reynolds stress
terms are now available, so they can be included in a numerical model and
integrated forward in time. However, closer inspection reveals that yet another
unknown term is present in the equation for the Reynolds stress, namely the
ﬁ(zéu}u;};f@xf term. This unknown is now a triple correlation term! As this
pattern suggests, if equations for the triple correlation term are developed,
then a quadruple correlation term is created. This cascading of unknowns is
called the rurbulence closure problem. There are always more unknowns than
equations, so at some point the remaining unknown terms need to be para-
meterized by relating them to some combination of the known variables. Stull
(1988) shows the turbulence closure problem that occurs in the remaining
equations of motion,

There are two related terms that describe where in this cascade of unknowns
assumptions are made, and define the most complex correlation terms that are
related to known variables. These terms are “order” and “level”. Both terms are
found in the meteorology literature, but the term order is used here. First-order
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closure means that there are equations for the state variables (u, v, w, T, g), or the
first moments, and the covariance terms (e.g., 2/v') are parameterized. Second-
order closure means that there are equations for both the state variables and the
covariance terms, and the triple correlation terms are parameterized. There also
are examples of non-integer closures, such as half-order and one-and-a-half-
order closure. Part of the motivation for higher-order closures is that, for
example, “if a crude assumption for second moments predicts first moments
adequately, perhaps a crude assumption for third moments will predict second
moments adequately™ (Lumley and Khajeh-NOLll‘il 1974, p. 171).

When the unknown terms in the equations are related to the known vari-
ables, there are two very different approaches that can be used for boundary
layer parameterization. One approach is called local closure, and the other
approach is called non-focal closure. Local closure relates the unknown vari-
ables to known variables at nearby vertical grid points. Thus, when the model
is solving for the Revnolds stress term at z =500 m, only the model variables
within a small distance around z =500 m are used for the unknown terms. In
contrast, non-local closure relates the unknown variables to known variables
at any number of other vertical grid points. So for the same situation, a non-
local closure scheme may use all the vertical grid points within the boundary
layer to determine the unknown terms and to solve for the Reynolds stress
term at z=300m. As can be seen, these approaches are conceptually very
different and can result in dramatically different evolutions of the boundary
layer. Some common closure approaches are now explored.

5.4 Non-local closure schemes

The boundary layer is influenced directly by what is happening at the Earth’s
surface and responds to changes in surface forcing very quickly. Most of the
turbulent energy is found in the largest eddies, which typically are of the depth
of the boundary layer. The potential benefits of a non-local interpretation are
illustrated in Stull (1991), where he clearly shows that a non-local viewpoint
explains the turbulent characteristics of a boundary layer above a forest
canopy, whereas a local viewpoint produces expectations that do not match
observations of the heat flux (Fig. 5.9). It is clear that non-local approaches
have a number of advantages over local approaches, and so we begin with the
simplest non-local approach — a mixed layer scheme. We then move toward
more sophisticated schemes that are representative of the non-local schemes
most commonly used in atmospheric models.

' Reprinted with permission from Elsevier.
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Figure 5.9. Local versus non-local interpretations of boundary layer stability
and associated turbulence. A tvpical sounding from above a forest canopy 1s
shown in (a). illustrating the local static stabilitv and turbulent conditions.
The heat flux is shown in (b}, with the local and non-local interpretations of
this flux. The calculated eddy diffusivity is shown in (¢). further illustrating
the challenges to local interpretations of this boundary layer that lead to
incorrect expectations {or turbulence. From Stull (1991).

3.4.1 Mixed layer schemes

Mixed laver models were first developed in the 1960s and were used to explore
stratocumulus development by Lilly (1968) and later for general boundary
layer development (Carson 1973; Betts 1973). Mixed layver models are still used
in many ocean models, and are quite efficient computationally.

The basic assumptions in mixed layer models are that potential temperature
is constant with height in the mixed layer, and that the mixed layer is hori-
zontally homogeneous. Neglecting the effects of horizontal advection. one
finds that

-2 we). (5.16)

for a mixed layer model. Since the potential temperature is constant with
height. w/# must vary linearly with height (as often observed) and. therefore,
the only fluxes that are important to the change of potential temperature with
time occur at the top and bottom boundaries. This leads to
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where H is the top height of the mixed layer and the subscript S represents
fluxes from the ground surface.

The surface fluxes are obtained from calculations of Qy as discussed in
Chapters 2 and 3. so all that is needed is an equation for the fluxes at the top of
the boundary laver. The flux at the top of the mixed layer is equal to the
turbulent entrainment of potential temperature into the mixed layer as the
mixed laver grows and ingests parcels of air from above. Assuming no change
in the mixed layer depth due to environmental subsidence or lifting. this can be

escribed mathematically as

— ", o
(W), = - (6_ ). (5.18)

1yt o=

where 6. is the potential temperature of the air just above the mixed layer top
as shown in Fig. 3.10.

This result can be derived using Liebniz’ rule for differentiation of integrals
(Dutton 1976). Recall that this rule states that
el da

[POF(x.) B 5
[ = [P e % )

il LI

G —»

Figure 5.10. Illustration of a mixed-layer model profile of potential
temperature (§) versus height () in which the potential temperature is
constant within the mixed layer and there is a discontinuity of potential
temperature at the top of the layer (/). The value 8. defines the potential
temperature at the bottom of the atmospheric layer that lies on top of the
mixed laver.
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By assuming that F (x, f) = 6(z, r) and integrating across the inversion layer it is
found that
o0 d [ dH. _dH_

—dz=— 0d-—8_ + 6 ,
H_ ()f ‘ df H_ {fl df ’

(5.20)

where H_, is a height level just above the inversion height H, and H_ is a height
level just below the inversion height H. Also note that the terms are reordered
slightly to move the partial derivative to the left-hand side of the equal sign.
Recalling the definition of the time rate of change of the mixed layer potential
temperature, namely

== (). (5:21)

and substituting this expression into the left-hand side term of Liebniz’ rule in
(5.20) yields

H. He §( g
@ct’::— a(w'e")

= o dz = (W), (5.22)
JH_ fi_ =

since by definition the flux is zero above the mixed layer at 4. By the mean
value theorem, there exists a mean value of 4, say 6, for which f<f<6.,
allowing the first term on the right-hand side of Liebniz’ rule in (5.20) to be
rewritten as
d 7 d .- ;
— Od: =— 0(H. — H_ )|, 5.23
di ), T at ( L (5-23)
which goes to zero as H. and H _ both approach H. Finally, as H, and H_
approach the same value H we obtain from (5.20) that
R dH — dH
W), =" —6) = ———A¥. 5.24
(” 4 )H dr (9 ) At ¢ ( )
This equation predicts the rise in mixed layer depth in the absence of
environmental subsidence or lifting. but the system of equations is still not
closed. One solution is that laboratory measurements (Deardorff et al. 1969)
suggest

(W8 )y = =02(WO ) = —ke (W), (5.25)

where k, is an entrainment coefficient. This relationship then closes the
system of equations. As seen later, there is some uncertainty in the value
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of k,. Regardless. if the following expression is used for the surface sensible
heat flux,

(W8 ), = (6‘;}7_6’) (5.26)
H

then a set of two equations is obtained that describes the evolution of the
mixed layer

d??‘ { 1 + kL: i qu - 5) . . QH _
—=- - =(1+k,) . .
dt ryH ' e) pepH (5.27)

dH _ke(6s=6) _ k.Qu

— _ Kekn 5.8
d - raA8 | po,Al (5.28)

When the surface skin temperature is held constant, as happens over short
timescales when air moves over the oceans, the mixed layer temperature
approaches the surface skin temperature (Fig. 5.11). However, the depth of
the mixed layer is very much dependent upon the amount of entrainment.
One can also include mixed laver equations for moisture and momentum,

such that

Initial
profile ]

Height (m)

|
bl
it

282 284 f5 286 288 290 292
Potential temperature (K)

Figure 5.11. Evolution of the potential temperature versus height within a
mixed layer model as a function of time. Note that as time becomes infinite,
the mixed layver temperature and the surface skin temperature are equal.
From Lilly (1968).
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dg_1(0Q¢  kQulq) (5.29)
dt H IUIT--.- ,DC_;;QQ
{Er I.-CH i T yd -~ Ir 5 ki’()HA I;:” 1 5
— ) (V=T CrlVyy- | =V = 2 3.30)
——(!'! _ﬁ\ vy 2 DY H H ,()(‘pAH H’ ( !

where the A subscript on the wind vector denotes the horizontal wind, Cpisa
dimensionless drag coefficient. A refers to differences across the top of the
mixed laver for either specific humidity or momentum, /is the Coriolis force,
and the g subscript denotes the geostrophic wind.

Artaz and Andre (1980) compare different mixed layer schemes and find
that the ones that directly relate the inversion-level heat flux to the surface
sensible heat flux perform as well as any of the other approaches in predicting
mixed layer depth. However. the greatest uncertainty in these schemes is
the value of the entrainment coefficient. For free convective conditions, values
of 0.1-0.4 appear to be reasonable (Stull 1976; Heidl 1977). However,
Dubosclard (1980) suggests an entrainment coefficient near 1.0 for situations
when the surface sensible heat flux is small. Betts er ¢/, (1992) argue that 0.4isa
better value than the traditional value of 0.2, while Margulis and Entekhabi
(2004) calculate a range of values from 0.22 to 0.54 by coupling observations
with a mixed layer model. It is clear that the range of values for the entrain-
ment coefficient determined from observational data is large and that the value
chosen has a significant effect on the resulting mixed layer evolution.

Mixed laver schemes are also used by Betts er «l. (1990, 1992) as the
foundation for examining boundary layer budgets. The approach outlined in
these studies allows one to display graphically (in two-dimensional vector
form) the mixed laver energy budget on a conserved variable diagram, with
vectors representing the surface flux, the mixed layer tendency, and the
entrainment flux (Fig. 5.12). The origin of all three vectors is determined
directly from the observed values of the mixed laver mean potential tempera-
ture and the mixing ratio. The surface flux vector is determined from observa-
tions of the sensible and the latent heat flux, and indicates the warming and
moistening that would occur in the mixed layer if surface fluxes alone deter-
mined mixed layer evolution. The mixed layer tendency vector is determined
directly from the observed values of the mixed layer mean potential tempera-
ture and the mixing ratio at a later time. Finally, the direction of the
entrainment flux vector is determined from rawinsonde observations as the
sonde penetrates the inversion layer. The magnitude of the entrainment flux
vector is calculated using the assumption that the surface and entrainment
fluxes together determine the evolution of the mixed layer, such that the sum of
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Figure 5.12. Vector dingrams for the mixed layer budget, with M representing
the initial mixed layer, A representing the mixed layer at a later time, F
representing the surface flux vector, F; representing the entrainment flux
vector. After Betts (1992).

the surface flux and entrainment flux vectors equals the mixed layer tendency
vector (Fig. 3.12). The entrainment coefficient can then be determined by
projecting the vectors F, and F,; onto a dry virtual adiabat (see Betts 1992).
This technique provides a good conceptual picture of boundary layer evolu-
tion, and is another way in which mixed layer schemes continue to be valuable
in meteorology. Mixed layer schemes have even been used to study cirrus
outflow dynamics (Lilly 1988).

5.4.2 Penetrative convection scheme

Estoque (1968) visualizes the exchange of heat in the boundary layer as taking
place between the ground surface and each level within the mixed laver, a clear
example of a non-local viewpoint. This assumption leads to a heat flux
distribution that depends upon the entire temperature distribution within the
boundary layer. such that countergradient fluxes are a natural outcome of this
approach. Blackadar (1978) develops a one-dimensional boundary layer
model based upon this idea. as outlined and tested in Zhang and Anthes
(1982). This scheme 1s often referred to as the Blackadar scheme.

Assume that the intensity of mixing under free convection depends upon the
surface laver temperature (#,;) and the heat flux at the top of the surface layer
{On,). Priestley (1954) derives an expression for the heat flux at the top of the
surface layer, in which

.

On, = pepzab(0y — Oginz), (5.31)
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where z,; is the thickness of the surface layer. ;. - is the potential tempera-
ture of the first model layer above the surface layer, p is the density, g is the
acceleration due to gravity, and

. v 31/7
h= 2g 1 (=13 _ ey 1] 5
o 279“ g L-.S! '—._-5,1___-3:) . 32

The time rate of change of the surface layer potential temperature is then

35.;; _ '::QH - QH)

s , 33
i PCpZsi (5.33)

which 1s simply proportional to the difference of the fluxes into and out of the
surface layer. This is another example of how the depth of the atmospheric
layers influences parameterization scheme behavior, as a thinner surface layer
leads to a faster response 1n the surface layer potential temperature.

Within the convective boundary layer, the time rate of change of potential
temperature is given by

09(z)
ot
Here 71 is the fraction of mass exchanged between the boundary layer and the
free atmosphere above, and w(z) is a weighting function used to account for
variations in the exchange rate. Typically, w(z)=1 at all heights, although
Estoque (1968) proposed that w(z) should decrease linearly as a function of
boundary layer height.
To determine 7, it 1s assumed that no flux occurs across the top of the
boundary layer, such that

= 7w (2)[By — 6(=)]. (5.34)

Qu, — mMpe, / By — 6(2)] d= =0, (5.35)

A4

and therefore

*Zrap -1
7= Qu, [pcl,,(l — k) / 6y — 6(2)] d;} , (5.36)

where k. again is the entrainment coefficient. The value of k. can be viewed
schematically as the ratio of negative area to positive area within the planetary
boundary layer in Fig. 5.13.

Results from Zhang and Anthes (1982) suggest that this non-local scheme
typically does very well in non-saturated boundary layers. Bright and Mullen
(2002) also find that it does very well in simulating the boundary layers over
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Figure 5.13. Illustration of potential temperature versus height within the
boundary layer, highlighting the positive and negative areas on the diagram
that are used to define the boundary layer top (z.,). The entrainment
coefficient is &, and z; is the inversion level. After Zhang and Anthes (1982).

Arizona during the summertime, when boundary layer depths can exceed
3km. As applied in numerical models. this scheme reverts to a local closure
approach during neutral and stable boundary layer conditions. An extension
of this scheme that retains the direct, non-local upward flux from rapidly rising
plumes while also including a gradual downward flux due to compensatory
subsidence is found in Pleim and Chang (1992).

5.4.3 Non-local diffusion scheme

Another non-local closure approach to modeling the boundary layer is used in
the National Centers for Environmental Prediction (NCEP) Global Forecast
System (GFS). This scheme is described by Hong and Pan (1996), based upon
Troen and Mahrt (1986). and the description of it here largely follows their
derivation. This scheme uses results from large-eddy simulations in its for-
mulation. Deardorff (1972), Troen and Mahrt (1986), Holtslag and Moeng
(1991) and Holtslag and Boville (1993) show that the turbulence diffusion
equations for prognostic variables (u. v, 6, ¢) can be expressed as

oCc d ac '
5 =5 {Kf (E_ )} (5.37)
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where K, 1s the eddy diffusivity coefficient and 7, is a correction to the local
gradient that incorporates the contributions of the large-scale eddies. In this
scheme, the correction to the local gradient only applies to the potential
temperature and specific humidity equations, and not to momentum. In addi-
tion. a local closure approach 1s used above the boundary layer.

Following Troen and Mahrt (1986). Holtslag ef a/. (1990), and Holtslag and
Boville (1993). the momentum diffusivity coefficient is defined as

Koy = ko, (1 - ~) (5.38)
h
where & 1s the von Karman constant (= 0.4), z is the height above the ground
surface, /1 1s the height of the boundary layer, i, is the mixed layer velocity
scale. and the exponent 2 is a profile shape parameter. The mixed layer velocity
scale is defined as

Wy = 1.0, ", (5.39)

where u. 1s the surface friction velocity and o,, is the wind profile function
evaluated at the top of the surface layer. The correction to the local gradient
from the large-scale eddies for 8 and ¢ is given by

[ETC AT
. =g e (5.40)

Wy

Here the constant 7.8 1s a proportionality constant defined following the
derivation in Troen and Mahrt (1986). To ensure that the top of the surface
layer and the bottom of the boundary layer are compatible, identical profile
functions are used for both layers. For unstable and neutral conditions,
defined as having positive buovancy flux. define

174
Onz - (l - lé%} \ (5<41}

0.1\ P
= (1=16—= . 5.42
b, ( 6> ) (5.42)

where L is the Monin-Obukhov length, ¢,, is used for momentum variables,
and o, 1s used for mass variables. For the stable regime with buoyancy fluxes
ess than zero. the profile functions are defined as

_0.1A -
Oy = O = 1 - DT . (3‘43)
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Finally. to close the svstem the boundary layer height is calculated from

6., | U
h=Ri,————— (5.44)
o(B(h) —4,)
where Ri, is the critical Richardson number (=0.25), U{4) 1s the horizontal
wind speed at the top of the boundary layer (%), 4, is the virtual potential
temperature at the first model level above the ground surface. and 6, is a near-
surface temperature defined as

_ o (W) .
=6, ~6r=46, ~T78——. (5.43)
r a H'_\-!ri‘

In the early testing of this scheme, it was found that the value of ¢ could
become too large when the winds were wezk. yielding an unrealistically large
boundary layer depth. so an upper value of 8= 3.0 was chosen. In addition,
the thermal diffusivity coefficient K_, is proportional to the value of K,
through the Prandtl number (Pr). such that

Pr=2 —+'8A— (5.46)

The value for boundary laver height (/) is determined iteratively. First, /1 is
estimated without considering the thermal excess #7. This value of / is then
used to compute all other variables needed. and then to compute the thermal
excess. Then /7 is calculated again using the value for f7. This is done until a
value for /i is found that is stable.

The scheme perhaps is easier to understand il one rewrites the equation for
boundary laver height in terms of the virtual potential temperature at the
boundary layer top. This manipulation yields

6,0 = 6, ~ oy R UBT (3.47)

]
o
gh

From here it is easier to see that as the buovancy flux from the ground surface
increases. leading to a larger value of #7. the boundary layer deepens since #,(h)
increases (see Fig. 5.14). The third term shows that #,(/1) increases as the wind
speed at the top of the boundary laver increases and is larger for smaller
boundary laver depths. These behaviors are consistent with many observa-
tions of boundary layer development.

Results from Hong and Pan (1996) indicate that this non-local diffusion
scheme produces better boundary layer structures during the First ISLSCP
(International Satellite Land Surface Climatology Project) Field Experiment
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Figure 5.14. Boundary layer potential temperature versus height, showing the
relationship between surface layer 6, + @r and the temperature at the top of
the boundary layer 8.(h).

(FIFE) than a Jocal closure scheme (Fig. 5.15). The local closure scheme for
this case produces a boundary layer that is too shallow, which is a well-known
problem when countergradient fluxes are important. The non-local diffusion
scheme produces an adiabatic lapse rate in the boundary layer, very much in
agreement with observations. In addition, while the non-local scheme under-
estimates the specific humidity near local noon, it produces a very reasonable
moisture profile by late afternoon (Fig. 5.15).

There are many other non-local closure schemes available in the litera-
ture. One of the more unique schemes is from Stull (1984, 1988, 1993) who
develops a transilient turbulence scheme that allows for a range of eddy
sizes to influence the turbulent mixing. This theory is based upon a discrete
view of the non-local mixing that occurs in the boundary layer. Consider a
boundary layer that is divided into a finite set of discrete layers, which for
simplicity are assumed to have equal depth. Since large eddies dominalte
the vertical mixing in many boundary layers, it is possible that the evolu-
tion of a given vertical layer is influenced by mixing with any or all of the
other vertical layers. Thus. there is a need to represent how each layer
mixes with each other layer. This is accomplished by defining a transilient
matrix c(i, j) to represent the fraction of air mixed into vertical layer i from
vertical layer /.

The transilient matrix has a number of constraints in order to satisfy mass
and state conservation. The sum of all the values of (i, j) for a fixed value of j
must equal 1, and the sum of all the mass-weighted values of (i, j) for a fixed
value of 7 must equal 1. In addition, no element can have a value less than 0 or
greater than 1. As an example, if no vertical mixing occurs, then the diagonal
elements of ¢(/, /) are equal to 1 and all the other elements are equal to zero,
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Figure 5.15. Comparisons of boundary layer profiles of potential temperature
(K) and mixing ratio (gkg” 1 for the 9-10 August sonde averages (shaded
lines) with averages from the non-local (solid lines) and local (dotted lines)
schemes for (a) 1845 UTC and (b) 2145 UTC. Potential temperature on the
left side. and mixing ratio on the right-hand side of the figure. From Hong
and Pan (1996).

indicating that no mixing occurs. In contrast, if all the elements of ¢(i, j) are
non-zero, then the boundary layer is mixing throughout its depth.

A variety of different physical processes can be simulated with this approach
depending on the form of the transilient matrix. The mixing processes active at
any given time can be discerned from the location within the transilient matrix
and the amount of air involved as indicated by the size of the matrix elements
(Fig. 3.16). This scheme unifies the boundary layer and turbulence parameter-
izations under a single approach. Raymond and Stull (1990) apply this unified
turbulence scheme to several case studies and show good results.
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Figure 3.16. Physical interpretation of the mixing processes from the elements
in a transilient matrix. The amount of air involved in the mixing is determined
by the magnitudes of the elements. From Ebert er al. (1989).

5.5 Local closure schemes

The discussion of non-local closure schemes suggests that there are problems
with local closure schemes, since the local stability is not necessarily related to
the amount of turbulence and mixing that is occurring. This mixing is often
tied strongly to the largest eddies present within the boundary layer, which are
not controlled by local gradients in stability. Methods to overcome these
deficiencies in local closure involve using higher-order local closures (Mellor
and Yamada 1982). However, we begin by reviewing the concepts of first-
order closure before moving on to more sophisticated schemes.

5.5.1 First-order closure scheme

One of the most commonly used forms of turbulent closure is first-order
closure, commonly referred to as K-theory. In first-order closure, only the
prognostic equations for the means of the variables are retained and the
turbulent fluxes are parameterized (Stull 1988). Thus, we begin with

o; o, , 1 dp &u; I w)

—_— U= —0png + Ciplly — ——— + V—— —ri 5.48

o g 38+ Jeikdl 7 ox; U()x;-~ oxp (5.48)
of ol o d')
— 4 fij— = — ———— + diabatic terms, 5.49
ar ox; 0x; (5.49)
¢ e Aulg’) )
R s B A source/sink terms, (5.50)

o ox, ox
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where the covariance terms are those that need to be parameterized. Note that
on the right-hand side of (5.48). the second to last term represents molecular
effects and is so small that it can be neglected. The covariance terms are
parameterized using

: a¢ <<
w.ll = — ’—Lﬁ (5.51)
- ax;
where K has units of m*s . For K> 0. the flux /¢’ flows down the local

gradient of {. This relationship is called K-theory. If we use this relationship in
the equations for the mean quantities, then we obtain

i; oii; _ 19p O ii; .
- T Ui = —0ag T+ feplly — :.—p + Kn—. (5.52)
di Jx; T P o x5

a8 06 &6 . .

— + ii;— = Ky —— <+ diabatic terms, (5.53)
dt T OX; OX7

og 9q &g - - -
A z‘r.-—’f =K . source,/sink terms. (5.34)

: i Ha 5
dr iy ox:

where K,,, and K are the different coeflicients for the mixing of momentum
and mass. respectively. Typically, when one refers to K-theory they only mean
the vertical derivatives and the horizontal derivatives are referred to as hori-
zontal diffusion.

It is often helpful to view this relationship schematically. To begin, look at
the @' term since we have some idea how this flux behaves in the planetary
boundary layer. As shown in Fig. 5.17, i 6 decreases with height as occurs in
the lowest portion of the boundary layer. then w'@ is positive and turbulence

/ déidz> 0

dsidz=10

Ground

\d&-’ dz<0
H -

Figure 5.17. [llustration of the boundary layer potential temperature versus
height. with the lapse rates for three very different layers indicated.
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Figure 5.18. Profiles of and g and 7 (solid lines) as a function of z. The

perturbations ¢ and u' arc created by moving a parcel upward \\1thm this
environment an amount Az.

moves warm air upward. This is consistent with expectations from rising
thermals moving hot air near the ground upward. If # increases with height,
as occurs at the very top of the boundary layer, then w'@ is negative and
turbulence moves warm air downward. This is what one would expect from the
entrainment of warmer air from aloft into the boundary layer. However, a
problem occurs when ¢ is constant with height as occurs in the middle of a very
well-mixed layer during the daytime. In this case, K-theory indicates that no
turbulence is occurring, whereas observations would probably show very
strong thermals moving upward through the boundary layer and penetrating
the capping inversion.

A simple thought experiment can be used to illustrate a variation on
K-theory. Assume that an idealized boundary layer exists with linear profiles
of g and 1 as in Fig. 5.18, where only small eddies are present (i.e., no non-local
transport). A turbulent eddy moves a parcel upward a distance of Az and the
parcel does not mix with the surrounding environment. Thus, the parcel differs

from its environment by
; oq .
= = = A:_ —_3
q ( 3:) (5.55)

W =— (%1;) z. (5.56)

Now. in order to move a distance Az, the parcel requires some upward
motion 1. If the turbulence is such that »’ is proportional to «/, then

W= —cu = c(gi!) Az (5.57)

From the equations above, the product w'q’ caused by that one idealized eddy
can be determined. Averaging over many such eddies to find w wq yields
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W = — (?)AL(?) - = —¢(Az)? (gq) (3”) (5.58)

where (Az)” is the variance of the parcel displacement. If a mixing-length / is
defined. such that /2 = ¢(Az)” then

— 6:; @q -
: 5.59
Vg = 52| B2 (5.59)

Recalling from K-theory that
wq = —-KH?—?. (5.60)
then 1t follows that
~'(3u

Ky =F| d_ . (5.61)

which is called mixing-length theory (Stull 1988). This theory suggests that K
increases as the shear increases. and also that K increases as the variance of the
parcel displacement increases. This allows for K-theory to apply in a more
realistic way to boundary layer development. The limitations of mixing-length
theory are that it is valid only in boundary layers not having large eddies, and
that it only allows for downgradient transport (unless K <0 is allowed). Also
note that the vertical transport of perturbation velocities is neglected, which
may be large.

Let us return again to examine observations and compare against mixing-
length theory. It is not unusual for the winds within the boundary layer to be
relatively constant with height within a well-mixed layer during the daytime
(Fig. 5.19). This situation often occurs when large eddies are present, which
implies mixing-length theory will have difficulty. Zhang and Anthes (1982)
show the development of such a mixed layer over Marfa, Texas, at both 1800
UTC 10 April and 0000 UTC 11 April 1979. Using mixing-length theory, an
examination of Fig. 3.19 suggests that the value of Ky is again near zero
throughout the boundary layer, and then changes to a large value at the top
of the boundary layer where the wind shear is greatest. So, K from mixing-
length theory is influenced by dU/dz, but not by the stability of the layer. This
is not realistic, and indicates that more reasonable parameterizations for K are
needed. Blackadar (1979) suggests that one such parameterization valid for
heights less than 200 m 1s
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Figure 5.19. Mean wind ~pud i versus height = within a daytime boundary
laver from the ground surface to above the inversion level (z;). Values of K
indicated within three different layers.
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where Riis the Richardson number defined as

(5.63)

and /= kz=0.4-. For heights greater than 200 m, one might instead use

. - ._!1'158 .
= (1 — 18Ri) (—“
1=

(5.64)

where /=70 m and K, cannot be negative (Stull 1988).

One of the common threads in these various definitions of K is that they
depend only upon the local values of the model variables. such that K-theory is
a local closure approach to turbulence closure. Because of the local closure
assumption, when surface heating is strong. K-theory can produce very deep
superadiabatic layers near the surface that are unrealistic. In addition, not all
turbulent transport is downgradient. This last point can easily be illustrated by
examining the boundary layer during a typical summer morning. A super-
adiabatic laver exists near the ground surface, with the remaining stable
nocturnal inversion layer above it. Large eddies associated with the rise of
warm air parcels transport heat from hot to cold regardless of the local
gradient of the background environment. So in this case warm thermals
move heat upward, even though the background environment would suggest
from K-theory that warm air is being transported downward. Thus, when large
eddies exist. K-theory often fails owing to upgradient. or countergradient,
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fluxes. Thisis perhaps the most important criticism of K-theory — that the mass
and momentum transport in the boundary laver during the daytime is mostly
accomplished by the largest eddies, and that these eddies are more representa-
tive of the properties of the entire boundary layer than the local conditions at
one vertical level (Deardorfl 1972; Troen and Mahrt 1986; Holislag and
Moeng 1991: Stull 1991). In addition. Ayotte e/ al. (1996) show that this
tvpe of scheme tends to underestimate entrainment when the capping inversion
is strong.

5.5.2 1.5-order local closure scheme

As the order of the closure increases, the parameterizations include more
equations for the higher moments. Thus, for 1.5-order closure the parameter-
izations typically include equations not only for the standard prognostic
variables (7. 7. 4.7), but also the potential temperature variance (6"%) and the
turbulent kinetic energy (2). Also recall that most boundary layer schemes in
use today are one-dimensional and only consider the vertical derivatives. The
equations for a typical 1.5-order closure scheme are (Stull 1988)

Jii: ii; _ . 1o Ilun') o
— Ui = —0ng + el — :,_—‘J — 7| (3.63)
it 7 dx; S 7 Ox; dz '
— 4+ §i;— = — ———— +diabatic terms. (5.66)
it dx; o o
ol dg dlw'y’ , _
—” + i1 _; = - Hif + source/sink terms. (3.67)
ot ox; Jz '
e — O —av g a w'p -
—_= —u' - — Y‘llln.’T LZwg — - —J{ L ew' | — &g, (368)
ot dz dz 8 dz\ p
ag- T i a—
— = 2w — — — W) =28 — &g, (5.69
o 7= 5\ )

where dissipation is indicated by the ¢, ¢4, and ex terms.

The unknown variables in this set of equations include the fluxes
' Y w8 g /B, and wq', the third moments w'e, w82, and the three
dissipation terms. Thus. as mentioned by Stull (1988). it initially appears
that the addition of the variance equations has created havoc instead of
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producing conceptual stability. With first-order closure there are four
unknowns to specify. whereas here there are six more unknowns for a total
of 10! The reason behind this apparent madness is that the additional equa-
tions for the potential temperature variance and the turbulent kinetic energy
provide information on the intensity and effectiveness of the turbulence within
the boundary layer. This information is used to develop improved parameter-
izations for the eddy diffusivities K that can now be [unctions of 92 and &
instead of just functions of wind shear and stability as developed for first-order
closure.

Following Yamada and Mellor (1975). one suggested set of parameteriza-
tions for the 10 unknowns 1s as follows:

I = —K,, (a 9_) g‘g, (5.70)

T = —K, (é.?) ? (5.71)

Wf = —Ky (e 973) g_g_ (5. 97) (5.72)

W7 = —Ki (z 5*‘) 5;_@ ey (E. 97) (5.73)

W ("’: + e) = gL_«,e_E E ﬁ (5.74)
3 3 E

W2 = —Lae! E (5.75)

£ = i]lz , (5.76)

er = 0, (5.77)

& = EILE’T (5.78)

Here L, are empirical length-scale parameters that are often chosen by trial
and error to make the simulated flow best match the observed flow for a given
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set of cases. Often the values of L approach kz for small z, and approach a
specified constant L for large z. Typically, values for L, are between 50 and
100 m. Also, the y, term is used so that flux occurs even when there is no mean
vertical gradient in the variable, thereby allowing countergradient fluxes.

The expressions for the eddy diffusivities K are complex and include terms
related to the environmental wind shear and stability, but can be represented in
conceptual form as

K=LVe. (5.79)

where L is again one of the empirical length scales. Further information on the
details of these types of closure schemes can be found in Mellor and Yamada
(1982) and Janjic (1994). Another approach to determining the empirical
length scale is to include a separate prognostic equation for the dissipation
rate ¢ that is then used with the turbulent kinetic energy to calculate the length
scales (Stull 1988). However, these e-¢ closure schemes are not very prevalent
in the meteorological literature.

Note that in the parameterizations of the unknowns a consistency is seen
that applies for almost all of the definitions — downgradient diffusion. The
parameterizations for the covariance terms are specified as functions of
the vertical gradients of the mean variables, i.e. the W@ term is related to the
vertical gradient of f, and the value of K depends upon the potential tem-
perature variance and the turbulent kinetic energy. Similarly, the triple corre-
lation terms are parameterized as flowing down the vertical gradients of the
covariances, i.e. the w/#? term is related to the vertical gradient of #2 and the
magnitude of the turbulent kinetic energy. Note also that the dissipation terms
are parameterized as being proportional to their respective variables. Thus, as
the turbulent kinetic energy increases, its dissipation also increases.

The ability of 1.5-order and higher closure schemes to account for counter-
gradient fluxes is shown by Deardorff (1966). In the thermal variance equa-
tion (5.69), the first term on the right-hand side is a production term that
increases the thermal variance when the heat flux is downgradient, while the
dissipation terms act to smooth the flow. It is the second term on the right-
hand side that allows for countergradient flux. Deardorff (1966) notes that
w'# is generally large when # > 0 in the boundary layer and small otherwise, so
w87 is positive but decreases with height in the countergradient region. This
situation leads to countergradient fluxes as the thermal variance is increased.

One would expect that countergradient fluxes would be particularly impor-
tant in dry convective boundary layers. Teixeira et al. (2004) develop and
test a l.5-order closure scheme that shows improvements in simulating dry
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Day 33 * Day 34 ———Day 35—

Figure 5.20. Time and vertical variation of the computed 7 (twice the
turbulent kinetic energy in m’s ) t01 days 33 35 of the Wangara
experiment. From Yamada and \«ILI or (1975).

convective boundary layers over southern Portugal. Results suggest that the
improved boundary laver predictions are due to more realistic representations
of entrainment.

One of the benefits of 1.5-order or higher closure schemes is that they
explicitly predict the intensity of the turbulent kinetic energy (Fig. 5.20). The
diurnal cycle of the boundary layer is clearly seen in the turbulent kinetic
energy. and this type of information may be useful in studies of air pollution
dispersion. As discussed by Yamada and Mellor (1975). the computed turbu-
lence field helps to explain the behavior of the mean quantities, even if it is
difficult to use in comparisons with observations of turbulence.

The NCEP Eta model uses a 1.5-order closure scheme (Janjic 1994) for the
boundary layer that is slightly different from that discussed above. In the Eta
model scheme there is no equation for the potential temperature variance,
so the eddy diffusivities are defined only in terms of the turbulent kinetic
energy. This highlights that one must be careful when discussing schemes
with non-integer closures, since the exact application of the intermediate
closure assumptions is uncertain.

5.5.3 Second-order closure scheme

The many details involved in a full second-order closure scheme can be found
in Mellor and Yamada (1982) and Stull (1988). which are both excellent
sources for information on local closure schemes. In addition to the equations
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listed for 1.3-order closure, second-order closure also has predictive equations
for all the remaining covariance terms F?f—’ W and zf'—q’ The number of
unknowns is large and includes some very complex and rather daunting-
looking terms. For example. if we look at the time rate of change of the
momentum covariance term we find

i) —dm; ——O0n;, Ouun') g
— = i L i == ———-__——":‘({‘_:;M',-H' r~ff6’)
ot s s oz oz g\
£ Sy S T
o'\ (o, OGN o
= === = 2z... (5.80)

o) \Ox;  Ox;)

This equation has a triple correlation term and a pressure correlation term.
The pressure correlation term

Ol Al - oin
w _,-I (\U_‘t N f_J'T (5.81)

partitions energy among the three components while not contributing to the
total energy. Rotta (1931) provides a key suggestion for the parameterization
of this term by calling it an “energy redistribution term” and specifying it as
being

= uru e d— (5.82)

{"I.'J'\'\ { O, f")”.’-\) — Ot
ax;

\p/ \dx;  Ox;y

where ¢ and d are constants. There are many proposed ways to paramelerize
the various terms in higher-order closure schemes. Most use some variant of
mixing-length theory and Monin-Obukhov similarity theory as a foundation.
Examples can be found in Launder ez @/. (1975). Lumley and Khajeh-Nouri
(1974), Mellor and Yamada (1974). Rotta (1951). Zeman (1981). and
Wichmann and Schaller (1986). Others are undoubtedly given in the literature.
While it is nearly impossible to summarize all the proposed parameterizations,
a brief overview of some commonly used closures is helpful.
The downgradient diffusion model suggests that

F e 2 —~
”L—“z—i(b.\.--a”), (5.83)
J: dz \

where L, is another empirical length scale. As mentioned previously, down-
gradient diffusion models have difficulty in simulating convective boundary
lavers where large eddies are important.

The diffusion term & can be parameterized as
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A

é_‘
I’

e= (5.834)
which 1s obtained through scaling arguments (Mellor and Yamada 1982). L, is
another empirical length scale.

The triple correlation terms can also be parameterized using the down-
gradient diffusion model, such that

ow’2gr ol -o(w@)
= —— LB 7 . 85
Jz 8:.{ ve 0z } (5.85)
LR o _9(67)
=——1L : 5.86
0z Oz { Ve 0z } ' (5-86)
where L;and L, are two more empirical length scales. Typically, one finds that
(Li.Lr. Ly, Ls,...) = (o, 00, 03,04, .. . )L, (5.87)
where
kz
BT G589
and

0.1 f o"ﬂ dz

In their review of local closure schemes, Mellor and Yamada (1982) state
that “the major weakness of all the models probably relates to the turbulent
master length scale (or turbulent macroscale, or turbulent inertial scale), and,
most important. to the fact that one sets all process scales proportional to a
single scale.” A comparison of a second-order closure simulation to observa-
tions during 2 days of the Wangara experiment shows that the boundary layer
scheme reproduces the general evolution of the boundary layer very well, yet
some important differences between the simulation and observations are also
seen (Fig. 53.21). At 12 local time the simulated boundary layer shows the mean
virtual potential temperature decreasing with height up to just below 1km,
whereas observations indicate a nearly constant value up to above 1km. The
boundary layer depth at 18 local time remains near 1 km in the simulation, but
iscloser to 1.25 km in the observations. The simulated and observed profiles at
3 and 9 local time agree fairly well, indicating that the local closure approach
does well at reproducing the nocturnal boundary layer structures for this case.

Lo (5.89)
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Figure 5.21. Simulated (top) and observed (bottom) boundary layer virtual
potential temperature (4,) and vertical and temporal variations taken during
the Wangara experiment over Hays, Australia. Isolines on the left-hand plot
are 8, — 273 and shown in units of kelvin. Times indicated on the right-hand
plots are local. From Yamada and Mellor (1973).

Thus, as mentioned previously, the local closure approach may have difficul-
ties in predicting the daytime convective boundary layer, although it does a
reasonable job in reproducing the nocturnal boundary layer for this case.

5.6 Turbulence and horizontal diffusion

Above the planetary boundary layer. turbulence and vertical mixing still occur
and need to be represented in numerical models. Local closure schemes typi-
cally are used to calculate mixing throughout the vertical extent of the model
domain from the surface through the PBL and upwards to the model top.
Transilient turbulence theorv also handles turbulence both in and above the
boundary laver, in addition to predicting boundary layer depth. Other non-
local closure schemes often are developed only to determine the PBL depth,
and another closure approach is used above the PBL to account for turbulent
mixing. For example, Zhang and Anthes (1982) use a non-local closure scheme
to represent daytime penetrative convection, but a first-order local closure
scheme is used above the PBL and under stable conditions at night. Thus, some
models mix both non-local and local closure schemes depending upon whether
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the PBL is unstable, neutral, or stable, in order to provide the best predictions
of boundary layer structure. Also, some numerical models have numerical

stability problems, and sometimes the numerical noise is damped by increasing
K 1o values that are much larger than is physically reasonable.

Horizontal diffusion is used in numerical models to parameterize not only
the horizontal effects of turbulent mixing but also to help control aliasing and
non-linear instabilities. Many models use either a second-order or a more
scale-selective fourth-order form for the diffusion term. The diffusion coeffi-
cient often has a constant background value plus a second term proportional
to the horizontal deformation (Smagorinsky et a/. 1965; Anthes and Warner
1978). Horizontal diffusion typically is calculated on the model coordinate
surfaces. although studies indicate that this approach may cause problems in
regions of complex terrain if the model coordinates are terrain following
(Zingl 2002: Juang et al. 2005). The form of the horizontal diffusion term
may be time-step-dependent, producing sensitivities to the value of the model
time step in the predicted precipitation fields for a weakly forced large-scale
environment (Xu er al. 2001).

5.7 Discussion

The evolution of the planetary boundary layer is very important, as it sets the
stage for many of the sensible weather phenomena that can occur in the
atmosphere. such as deep convection. Yet predicting the development and
evolution of the boundary layer is quite challenging. since the dominant
mechanism for boundary layer development is turbulence. During the day-
time. turbulence is often dominated by buoyancy gradients produced by sur-
face forcing. However. at night and in certain environments, turbulence is
created from the shear of the mean wind profile and is intermittent. Boundary
layer schemes. of course, have to account for all of these mechanisms by which
turbulence is generated. which is not a trivial task.

In contrast, it is easy to see that the magnitudes of the surface sensible and
latent heat fluxes are important to the boundary layer scheme during the
daytime when solar insolation dominates the surface energy budget. At
night, the balance between the incoming and outgoing longwave radiation
plays a large role in determining the ev olution of the boundary layer, as does
the mean wind profile. The connections between the boundary layer and the
soil-vegetation—atmosphere schemes discussed in Chapter 3 are many and
multifaceted. It is not difficult to imagine the complexities and sensitivities
one may encounter in boundary layer ev olutions around the world that could
lead any scheme to reproduce the observed boundary layer poorly on a given
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(dashed) composite soundings for Tucson. Arizona, for (a,b) non-local
closure schemes and (c.d) local closure schemes. Gray shading indicates
model-predicted PBL depths, while the arrow indicates the estimated PBL
depth from the observed composite sounding. Notice how both local closure
schemes underpredict the depth of the boundary layer by roughly half. After
Bright and Mullen (2002).

day. However. it also appears that certain boundary layer scheme behaviors
are consistent over time. For example. Bright and Mullen (2002) show thal the
local closure schemes consistently underpredict the boundary layer depth over
Arizona during the summertime (Fig. 5.22). This results in boundary layers
that are too cool and moist. During this time of vear. boundary layer depths
are typically greater than 2km and can approach and even exceed 3km.
However. the local closure schemes consistently underpredict the boundary
layer depth. often by a factor of 2. Comparisons against observed soundings
indicate that the differences between the boundary laver depth from the local
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Figure 5.23. Model forecast soundings from 0000 UTC 4 May 1999 using
(top) a non-local closure scheme and (bottom) a local closure scheme. Note
the differences in boundary layer depth and moisture from the two schemes,
as well as the strength of the capping inversion. The lowest model level winds
also are different, with the non-local scheme developing an easterly

component to the wind not seen in the scheme with the local closure
scheme. After Stensrud and Weiss (2002).
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closure schemes and observations are significant at the 5% level, indicating
that the local closure schemes consistently produce boundary layers that are
100 shallow over Arizona. Differences between the boundary layer depth from
non-local schemes and observations are not significant, indicating that these
schemes typically produce reasonable boundary layer structures. Errorsin the
boundary layer structure also influence the amount of convective available
potential energy (CAPE) present in the atmosphere, with the local closure
schemes overestimating CAPE by a factor of 2 on average (Bright and Mullen
2002). This result emphasizes the connections between the boundary layer
evolution and the potential for deep convection.

Unfortunately, these differences in boundary layer structure from local and non-
local closure schemes are not limited to Arizona in the summertime. Results from a
mesoscale model forecast of the 3 May 1999 tornado outbreak over Oklahoma
also reveal distinct differences between the boundary layers produced by local and
non-local closure schemes (Fig. 5.23). The boundary layer depth, structure, and
wind profile produced by the non-local scheme compares better with observations
than does the local scheme (Stensrud and Weiss 2002). However, there also are
occasions when a local closure scheme provides a better forecast than a non-local
closure scheme (Deng and Stauffer 2006). Selecting which type of scheme will
produce the best forecast for a given location in advance is not easy.

While the difference in boundary layer structure from local and non-local
closure is often noticed at observation times, these structures differ throughout
the model forecasts (Fig. 5.24). Similar differences are seen in Alpaty et al.
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Figure 3.24. Boundary layer height H (m), sensible heat flux Qg (W m~ %) and
latent heat flux O (W m ™) for grid point in southeastern South Dakota from
simulation starting 1200 UTC 28 June 1997. Model initial conditions and
parameterizations are identical, except for the boundary layer. Either a non-
local (non) or local scheme is used. While the surface fluxes generally are
within 20 W m ™2 throughout the first 10 h of simulation time, the differences
in boundary layer depth are large with the local scheme always producing a
shallower boundary layer than the non-local scheme for this case.

(1997) who compared four different boundary layer schemes with observa-
tions from both Wangara and FIFE. Since boundary layer schemes influence
the wind profiles, not only the potential for deep convection, but the type of
deep convection that may be expected to develop (e.g., a multi-cell versus a
supercell thunderstorm) is influenced by the boundary layer scheme.

The performance of five boundary layer schemes in the prediction of the
diurnal cycles of surface temperature and wind speed is evaluated by Zhang and
Zheng (2004), who find that while the diurnal cycle of surface temperature is
predicted well by all schemes there are large differences in the diurnal cycle of
surface wind speed. In general, all five schemes underestimate the surface wind
speed during the daytime and several of the schemes overestimate the surface wind
speed at night. Again, the feedbacks between parameterization schemes are wide-
spread and are often difficult to understand for a given forecast situation a priori.

As model grid spacing decreases to the point where the horizontal grid
spacing approaches the vertical depth of the boundary layer, then some of
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the largest thermals can be resolved explicitly to some extent by the model.
Large-eddy simulations that explicitly represent turbulent processes asso-
ciated with the larger eddies in the boundary layer often use horizontal grid
spacings of 100m or less (Agee and Gluhovsky 1999). yet still may have
problems representing some physical processes (Stevens et al. 2005). Thus,
horizontal grid spacings of 1-2km are far from that needed to explicitly
resolve turbulence. but are small enough that the model likely develops some
overturning circulations in the boundary layer. One challenge to boundary
layer parameterization schemes as horizontal grid spacing decreases is how Lo
distinguish the mixing explicitly created by the model from the mixing that still
needs to be parameterized on the subgrid scale. In addition. at smaller grid
spacings horizontal gradients of wind shear also may be important to the
generation of turbulence and these effects are not included in any of the
boundary laver schemes discussed previously.

One could go further, however. in outlining the concerns regarding all
boundary layer parameterizations. for both local and non-local closure
approaches. From the perspective of a model user, it seems apparent that
most boundary laver schemes have been thoroughly tested against only a
handful of data sets. Most of these data sets are from detailed boundary
layer observational studies that focused on areas of relatively flat and well-
behaved terrain regions with consistent vegetation. While these locales offered
good test grounds for examining boundary layer evolution in the best of
circumstances, the surface of the Earth is often far from these conditions.
Mountains, streams. rolling hills. and vegetation patchiness abound! When
observations are taken in regions near complex terrain, the resulting behavior
of the boundary laver does not always correspond well with our expectations.
Schneider and Lilly (1999) indicate that a number of common simplifying
parameterizations are not appropriate for the boundary layer behavior they
observed (Fig. 5.25). In addition. boundary layer roll circulations can develop
in clear air and influence boundary layer development. The effects of these
rolls are not included in most boundary layer schemes.

Few boundary layer schemes have been rigorously evaluated in complex
errain or under highly variable surface conditions, so what we are doing 1s
applying schemes that have been tuned to a handful of data sets (often in
pristine surface and environmental conditions) to all conditions across the
globe. Amazingly, the success of this application can be seen daily in the
consistent utility of numerical model weather forecasts, suggesting strongly
that some of the signals must be correct. But this does not mean that these
forecasts of boundary layver development should be expected to be correct,
or nearly correct. in all circumstances. The boundary layer certainly is not
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Figure 3.23. A structure schematic of the daytime boundary layer
characteristics observed near Boulder, Colorado. during the Phoenix II
experiment. Strong mixing occurs near the ground surface, with vortical
structures in the middle of the boundary laver, and patchy mixing from
gravity waves and shear turbulence production near the top of the
boundary laver. From Schneider and Lilly (1999).

observed everywhere. nor do we really know what to expect regarding bound-
ary layer evolution over some regions. There is no guarantee that the predic-
tions from boundary laver schemes will always be successful. Furthermore,
none of the schemes summarized previously allows for the direct influence
of clouds on boundary laver development, except when saturation occurs on
the grid scale. Instead. shallow convective parameterizations and cloud cover
paramelerizations have been developed to account for the effects of clouds
within boundary layers (see Chapters 6 and 9). As this discussion suggests,
there are many unsolved issues surrounding boundary layer parameterization
that deserve attention.

5.8 Questions

Following the outline provided by the section on Reynolds averaging and turbu-
lence closure. derive the equations for the perturbation velocity and potential

temperature
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Begin by expanding the variables into a mean and a perturbation component and
use the Boussinesq equation (5.3) and

or  ox; 3xf )
Show all work.
2. Using knowledge of turbulence closure, discuss the pros and cons to going to
higher-order closure schemes (i.e., third-order closure;).
3. One set of equations for a mixed layer model is

d_? _ (l +ke)CrV5(95 —-g)

dr H :
dH (8s — )
i k.CrVs A7

47 _ ., Mlgs—7) + [k.(05 — 9)Aq/Ad]
df s H 1

where M denotes the moisture availability, Cris a transfer coefficient, and V¢ is the
surface wind speed. Let us now examine the consequences of changing both the
entrainment parameter k, and the moisture availability. Assume the following:
Cr=0.015; Vs=10ms™~": M=0.5: =311 K + 10A7 (3h) "' (the potential tem-
perature increases linearly with time to 321 K at 3 hours and 331 K at 6 hours); and
gs=17gkg™" - 2.5A7 (3 hours)~! (the mixing ratio decreases by 2.5gkg™" over
3 hours). Also assume that the initial environmental potential temperature and
mixing ratio profiles look like
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§=310K + 5K xz (1000m)
g=11gkg ' at and below z=1000m
g=3gkg ' above z=1000m,

where H=30m at time zero (if H is zero at time zero, then the model blows up).
Develop a finite-difference version of these mixed layer equations and integrate the
equations for 3 and 6 hours using three different values of £.: 0.1, 0.3, and 0.5. Then
answer the following questions. What are the final values of # and ¢ in the mixed
layer? What are the final values of the mixed layer depth H? What do these results
say about the importance of choosing an appropriate value for the entrainment
coefficient when using a PBL model? Do these differences increase or decrease over
longer time periods?

One simple integration scheme is to define ¥, = f{x;.,), where / denotes the variable
(i=1. 2, 3) and # is the time level, and then integrate forward one time step to 1+ 1
using x;,.1 = 05\ - .{‘:—-_f,—_;:‘\\'hcrc one first determines X; pot = Xip + f(Xin) X At
and then determines Xj,.» = %01 = fl&iae1) X Az. This simple time integration
scheme is stable for the mixed layer model, but requires a time step of about 1s.

. Using the program developed in Question 3, assume that the land surface scheme
has a bias of +1K in the temperature forecast over a 3h period. Thus,
fs=311K + 11Ar/(3 hours). Rerun the mixed layer scheme with this surface
temperature evolution and with k,=0.3. What are the values of the mixed layer
depth H at 3 and 6 hours? How do these changes compare with changes in the
entrainment coefficient?

. Using the same initial potential temperature and mixing ratio profiles as in
Question 3, and with the same time rate of change of the surface potential tem-
perature and the mixing ratio, develop a simple finite-difference model of the
lowest 10000 m of the atmosphere based only upon K-theory mixing. Use

(=) &6(2)
kY ’ — K W )
ot #7522
and
9g(z) _ . &q(z)
ot H 922

and set up a vertical grid starting at the surface (z =0 so that 8, = §(0)) with 50m
vertical increments. Here @ is the mean potential temperature of a given layer and it
is allowed to vary with height. Assume that K is a constant. The time evolution of
potential temperature and the mixing ratio at z =0 is then specified. Try the finite-
difference approximation

. KHQ{ p
1('::.‘..’:— = -Fm.n + N [\EJH—LH s Fm--l.n - 2Fnr,n)«
(Ax)”
where m is the vertical grid level and # is the time level. Try time steps of 1s.
Integrate the model out to 6 h and examine the potential temperature and mixing
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ratio profiles. Try using several values of K;; between 10 and 200. What behaviors
are seen? Is this result realistic?

. Obtain an observed sounding from near local noon or late afternoon (00:00 UTCin

the USA is fine) and a corresponding 2 m temperature and mixing ratio. Determine
the positive and negative areas of this sounding, as defined from the penetrative
convection non-local closure scheme, and the boundary layer top. Using the
diffusion scheme. calculate the surface value of 4.+ #+ and from this value also
the boundary laver top. Finally, using the observed wind and thermodynamic
profiles. estimate values for Ky within this boundary layer using mixing-length
theory as in (5.39) and (5.61). How does the implied mixing from the local closure
scheme compare to the implied mixing from the non-local closure schemes?
Explain.

. Choose a single observed sounding location site and compare the observed sound-

ings against model forecast soundings at all available observation times for a 7 day
period. Construct a table comparing the boundary layer depth, the mean boundary
laver potential temperature, and the mean boundary layer mixing ratio from both
the model and the observational data. Separate the data based upon the observa-
tion time. Summarize the results.




