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Radiation parameterizations

8.1 Introduction

Radiation is the ultimate driver of atmospheric circulations, since radiation
passes through the atmosphere and reaches the Earth’s surface in amounts that
are unequally distributed in space and time. This unequal energy distribution,
due in part to the Earth’s spherical shape, produces horizontal gradients in
temperature, which produce atmospheric motions. Radiation not only deter-
mines the Earth’s climate, but also plays a significant role in local energy
budgets by providing the largest energy source terms. Radiation is unique
among atmospheric processes since it can transport energy without a medium,
yet it interacts with gases, liquids, and solids in very different ways.

Changes in the mean annual net radiation of a fraction of 1% can lead to
significant changes in global climate when this change persists over a number
of years. This highlights the importance of accurate radiation parameteriza-
tions to global climate models that are being used both to understand how
increasing greenhouse gas concentrations affect future climate and to provide
guidance to policy makers across the world. However, radiation also 1s impor-
tant in the day-to-day weather events that influence our lives. Just think of a
chilly fog-filled morning that breaks into a sunny and warm afternoon and the
effects of radiation on the weather we experience become clear. Radiation is a
key player in the atmosphere, both on very short and very long timescales.
Thus, radiation needs to be parameterized accurately under a wide variety of
atmospheric conditions.

Radiation parameterizations are intended to provide a fast and accurate
method of determining the total radiative flux at any given location. These
calculations provide both the total radiative flux at the ground surface, which
is needed for the surface energy budget, and the vertical radiative flux diver-
gence, which is used to calculate the radiative heating and cooling rates of a
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given atmospheric volume. We know from Chapters 2 and 3 that the magni-
tude of the terms in the surface energy budget can set the stage for moist deep
convection and are crucial to the formation of low-level clouds. In addition,
the vertical radiative flux divergence can produce substantial cooling, parti-
cularly at the tops of clouds, which can have a strong dynamic effect on cloud
evolution. While one can also use the total radiative flux to calculate the
horizontal radiative flux divergence, this term is often neglected in numerical
models owing to scaling arguments. Once the upward (Fy) and downward (Fp)
radiative flux densities (W m ) are determined, the heating rate for a given
layer of the atmosphere is defined as

= = Fo) 8.1)
The challenge of radiation parameterizations is to find ways to calculate £y and
Fp efficiently and accurately. This is because global climate models (GCMs) have
found that the radiation parameterization calculations can easily consume most
of the computer resources needed for the model simulations. As is seen through-
out this and the following chapter, we are still far from handling radiation well
when clouds are present and some difficulties remain in clear skies as well.

The spectral distributions of solar and terrestrial irradiance received at sea
level through a cloud and haze-free atmosphere (Fig. 8.1) indicate that several
simplifications are possible for radiation parameterizations. First, the short-
wave (solar) and longwave (terrestrial) portions of the spectra are distinct and,
therefore, can be treated separately. Second, many of the gases that absorb
either solar or longwave radiation (H-O, CO,, O», Os, etc.) are associated with
specific wavelength bands (Fig. 8.2). While there are some wavelength bands
for which multiple gases absorb energy, the number of bands for which only a
single gas is important is a fairly large fraction of the total.

Most parameterization schemes are either highly empirically driven
approaches that use bulk expressions for gaseous absorption and clouds, or
approaches that use two-stream or related approximations. Two-stream
approximations attempt to represent the total radiative flux in two streams:
one for the downward component and one for the upward component. Thus,
many of the schemes available today either use bulk column properties to
parameterize the shortwave and longwave contributions separately, or use a
two-stream approach to calculate the shortwave and longwave contributions
for both the upward and downward components. Before we discuss the
specifics of various approaches to simplifying the radiation calculations, a
few concepts are reviewed.
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Figure 8.1. Radiative {lux calculated using the Planck function and normalized
to 1 as a function of wavelength for the sun (7= 6000 K, black ling) and the
Earth (7=290 K, gray line). Note the lack of overlap between the two curves,
which allows for the shortwave (sun) and longwave (Earth) components to be

treated separately.
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Figure 8.2. Terrestrial longwave spectra caleulated for selected temperatures,
with the various absorption bands indicated. Also shown is the actual
emission spectrum taken by the Nimbus I'V IRIS instrument near Guam on
27 April 1970. From Liou (1980), reprinted with permission from Elsevier.
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8.2 Basic concepts

Electromagnetic radiation can be described as an ensemble of waves of varying
wavelength that all travel through a vacuum at the same speed — the speed of
light. The totality of all of these waves with different wavelengths represents
the electromagnetic spectrum (see Wallace and Hobbs 1977; Liou 1980;
Goody and Yung 1993). The human eye is sensitive to only a small wavelength
band within this spectrum called visible light. But waves with both smaller
(X-ray and ultraviolet) and longer (near-infrared, infrared, and microwave)
wavelengths also are important to understanding the atmospheric energy
budget. All materials with temperatures above absolute zero emit electro-
magnetic radiation continually.

The electromagnetic spectrum produced by a given source depends upon its
composition and physical state. Solids and liquids produce a continuous
electromagnetic spectrum, as illustrated by the smoothly varying curves in
Fig. 8.2. as do incandescent gases under extremely high pressure such as the
sun. However. luminous gases at low pressure. such as the polar aurora,
produce spectra that consist of distinct lines. These lines occur because an
isolated molecule can only emit and absorb energy In discrete units called
photons. in contrast to the strongly interacting molecules found in liquids,
solids, and gases at extreme pressure that together emit and absorb nearly all
incident electromagnetic radiation. An isolated molecule can transition to a
higher energy level by absorbing electromagnetic radiation, or can transition
to a lower energy level by emitting electromagnetic radiation. But only discrete
changes in energy are allowed. Since the energy of a photon of radiation
depends upon its wavelength, the discrete nature of the various energy transi-
tions in an isolated molecule leads to a spectrum of distinct absorption or
emission lines that arc very narrow and defined by the allowed changes in
energy level, separated by gaps in the spectrum for which no absorption or
emission is possible.

When a continuous ¢lectromagnetic spectrum, such as that produced by the
sun, passes through cool gases, such as found in the atmosphere. the observed
spectrum that reaches the ground is influenced by the selective absorption of
radiation by the gas molecules encountered. These molecules absorb the
electromagnetic radiation at distinct wavelengths, producing absorption
lines in the spectrum. The resulting spectra show the continuous electromag-
netic spectrum of the source interrupted by bands or lines that are a result of
the selective absorption. The width and shape of these absorption lines are
influenced by the atmospheric pressure and temperature through the effects of
Doppler and pressure broadening (Liou 1980). Thus, the absorption lines
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associated with the gases that constitute the atmosphere, with liquid water and
ice from clouds, and with aerosols from natural and anthropogenic sources,
are important to determining the amount of radiation that is transferred
through the atmosphere and absorbed by it.

8.2.1 Blackbody radiation

As discussed thoroughly by Liou (1980), Planck made two assumptions for
atomic oscillators in 1901 that led to the development of what is now called
Planck’s law, He first assumed that an oscillator can only have specific ener-
gies. 1. that the energy is quantized. Second, he assumed that oscillators only
radiate energy in discrete jumps or quanta. These assumptions led to the
development of the Planck function B,

. 2h?

BAT) = armr =Ty 8.2)
where v is the frequency, T is the absolute temperature, kg is Boltzmann’s
constant (1.3806 x 10 2 JK 1), cis the velocity of light (3.0 x 10¥ms™ '), and
h is the Planck constant (6.6262 x 10>*Js). This can also be written in terms
of wavelength / (= ¢/v) such that

]

Bi(T) = (8.3)

f;'s{ec;_ ksiT _ 1) |
where ¢; =1.191 x 107 Wm ™ sr " and ¢, =1.4388 x 107> m K. The Planck
function defines the emitted monochromatic intensity for a given frequency (or
wavelength) and temperature of the emitting substance. Recall that intensity,
or radiance, is the radiant power per unit solid angle (steradian) and implies
directionality in the radiation stream. Blackbody radiant energy increases with
temperature, whereas the wavelength of maximum intensity /,, decreases with
increasing temperature (4,,=a/'T, where 7 is temperature in K and ¢ is a
constant). This relationship between the wavelength of maximum intensity
and temperature is called Wien's displacement law. Note that the two curves of
emitted monochromatic intensity in Fig. 8.1 are determined directly from
(8.3), while the decrease in the wavelength of maximum intensity with tem-
perature can be seen from Wien’s displacement law.

A solid angle, d€Q, as used in the definition of radiance, or intensity, is a surface
area on a unit sphere (defined to have radius of 1). The equation for a solid angle is
_dA;

aQ = e (8.4)
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Figure 8.3. An illustration of a solid angle as defined using polar coordinates.
A pencil of radiation extends from the center of a sphere through area d4,.

where dA, is the surface area on a sphere of radius r (Fig. 8.3). Solid angles
have units of steradians, which are analogous to the use of radians for a circle.
The surface area dA, is found to be

dd, = (r d)[rsin(¢) do] = r* sin(¢) d¢ do, (8.5)
where ¢ and ¢ are the zenith and azimuth angles, respectively. Thus, we have

40 = M _ Gin(o) dc do. (8.6)

r

If this equation is integrated over an entire hemisphere, then

Q= /-' /- sin(¢) d¢ dp = 2n steradians. (8.7
0o Jo

Now, if the amount of radiance passing through a given horizontal plane
parallel to the Earth’s surface is desired, then the component of radiation
normal to this surface is needed. Knowledge of the zenith angle definition
allows us to define this normal component as

F; = I; cos((). (8.8)

where [; is the intensity, or radiance, for a given wavelength. If this relation-
ship is integrated over an entire hemisphere, then

F= / / " 1 cos(¢) sin(¢) dC do. (8.9)
0 0

and if the emitted radiation is isotropic, then this expression further
simplifies to
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F=1, / / " cos(C) sin(¢) d¢ de = xl,. (8.10)
J0 S

Il the Planck function is similarly integrated over all frequencics/wave-
lengths, and all directions within a hemisphere. and it is assumed that the
emitted radiation is isotropic, then one finds that

F=zaB(T)=0aT" (8.11)

This is the well-known Stefan—-Boltzmann law, where ¢ is the
Stefan Boltzmann constant (6=35.67 x 107 Wm K *). This expression
represents the maximum amount of radiative energy that an object can emit
at a given temperature. Since this quantity is integrated over an entire hemi-
sphere of directions, it represents the irradiance. In general, the irradiance
depends upon the orientation of the surface.

8.2.2 Radiative transfer

As a pencil of radiation traverses a layer in the atmosphere, it will be weakened
by its interaction with various atmospheric constituents (Fig. 8.4). The
decrease in the intensity /; of the radiation at wavelength / is observed to
follow

dl;, = —k;pl; ds. (8.12)

where p1s the density of the gas, & is the absorption coefTicient for radiation of
wavelength 2 (which is a measurc of the fraction of gas molecules that are
absorbing radiation at £). and ds is the thickness of the layer.

We can integrate this equation to obtain the intensity /; after traversing a
distance s in the absorbing material. vielding

() = L(0)e™ h Ao, (8.13)
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Figure 8.4. Depletion of the radiant intensity /; as 1t traverses an absorbing
medium. After Liou (1980) reprinted with permission from Elsevier.
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where 1;(0) is the intensity of the radiation at wavelength » upon entering the
atmospheric laver in question, and /;(s) is the intensily upon exiting this layer.
This relation is known as Beer’s law, or the Beer Bouguer-Lambert law in
Liou (1980). This expression is often rewritlen as

Lis) =10 (8.14)

where

T = / k;pds. (8.13)

is called the optical depth. or optical thickness. depending upon the context
(Liou 1980). The optical depth is a measure of the cumulative depletion that a
beam of radiation experiences as it passes through a given layer.

Geomeltry also plays a role in calculating the optical depth used in models. It
is convenient to measure the distance normal to the surface of the Earth, vet
the direction of radiation 1s often at some angle to this upwardly directed
normal. This angle is again our good friend the zenith angle. As the zenith
angle increases [rom zero. a beam of radiation passes through more and more
gas molecules as it traverses across a given layer of thickness dz. Thus, to
change the integral defining the optical depth from ds to dz, we need Lo take
into account the zenith angle. This leads to

1 =
T = - kipdz. (8.10)
cos¢ /.,

For any electromagnetic radiation 7; that passes through a medium, such as
the atmosphere, some of the energy is absorbed, some is scattered. and some is
transmitted through the medium. Thus, the conservation of energy requires
that

I;(absorbed) [;(reflected} [;{transmitted}

I I; N L

—u; +r;+1, =1, (8.17)

where ¢, is the monochromatic absorptivity. r; is the monochromatic reflec-
tivity. and 7; is the monochromatic transmissivity. When «; is non-zero, then
one also has to incorporate the emission of radiation from the medium
through which the radiation is passing. This yields. following Liou (1980),
the relationship

dI ;

I pds

—I; + B){T) + J;. (8.18)
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where T is the absolute temperature of the medium, —/; represents the loss of
radiance from attenuation (absorption plus scatiering), B,(7) represents the
emission of radiance from the medium, and J; represents a second source of
radiation from scattering into the line segment ds.

For longwave radiation, the scattering of radiation is negligible (Liou 1980),
vielding the simplified equation of radiative transfer

ar,
kipds

—1 + B;(T). (8.19)

If we assume a plane-parallel atmosphere (i.e., the atmosphere varies much
more in the vertical than the horizontal direction and that the Earth is large
enough to be considered flat) and account for the orientation of the radiation
beam to the upwardly pointing normal, and use our definition of the optical
depth from' 7, where dr; = —kpds, then we find that the equation of radiative
transfer becomes

dl;

—_— = .+ B{T). .2
dr; cos (! L+ Bi(T) (8-20)

Solutions commonly are found separately for upward and downward
radiances. The general procedure to obtain a solution is to multiply the
equation by the integrating factor =™/ ¢ and to integrate over the layer.
After combining the two I; terms on the left-hand side, the equation becomes

_/ - d _-_[,'_I:_r_:_](? r,_f_\:_|___.-'cos{] — /‘_ B,(T)(’ Tiiz)/ cos¢ d’r,-_‘ (821)

If we then integrate the left-hand side term from z; to z» and divide both sides
by e 71221/ ¢5¢ we find that after rearrangement we are left with

L(z) = [,-_(_—-]}()—j-;_r._:;:—-—,-.'Z_::J',..-’COS; + f B}\_(T)e—'_-—;_[:]';u—.-—,-_-:j::‘;_',-"cosc_‘ dr;.  (8.22)
o1

The first term on the right-hand side again represents the attenuation of the
outgoing radiation, while the second term is the internal atmospheric contri-
bution over the layer (Liou 1980).

Since the shortwave and longwave portions of the spectral distributions of
irradiance are distinct, we can develop separate paramelerizations for each
component. We begin with discussions of the longwave component, since this
is the one that is most expensive computationally.

' Optical depth increases in the opposite sense to =, and hence the negative sign.
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8.3 Longwave radiative flux
8.3.1 Empirical methods

As discussed earlier, there are two basic approaches to the parameterization of
radiation that have been used in models. The simplest and least computation-
ally demanding, but likely to be the least accurate, is an empirical approach
that relates bulk properties to the radiative flux. For example, numerous
methods have been developed to estimate the downwelling longwave radiation
at the ground from surface observations (Monteith and Unsworth 1990). One
of the simplest approaches is to assume

Qri=c—+daT;. (8.23)

where ¢ and 4 are constants calculated from observations and 7, 1s the 2m air
temperature. Unsworth and Monteith (1975) find that c=—119+16 W m~’
and d=1.06 =0.04, using observations from the English Midlands. Similar
values are determined over Australia by Swinbank (1968). Extensions to these
types of statistical correlations of radiative fluxes with weather variables are
possible for cloud conditions as well (Unsworth and Monteith 1975). They are
most accurate under average weather conditions and are not appropriate for
use at all times and places.

A similar approach is used by Anthes er al. (1987) to calculate the net
longwave radiation at the surface, where they define

Or,, = 560 T, — 50T, (8.24)

Here T, is the ground temperature (K). 7, is the air temperature approxi-
mately 40 hPa above the ground surface, ¢, is the ground or soil emissivity
(typically 0.9-1.0). o is the Stefan-Boltzmann constant, and ¢, is the atmo-
spheric longwave emissivity. The downward longwave component is based
upon the work of Monteith (1961) who shows that

g = 0.725 + 0.17log wp. (8.25)

in which w, is the total column precipitable water in centimeters. While compu-
tationally very efficient, these empirical approaches provide no information on
the radiative flux divergence above the ground that can be dynamically impor-
tant to cloud formation and breakup. In general, these approaches also neglect
gaseous emissions from sources other than water vapor.

When clouds are present, the approach of Anthes er al. (1987) simply
increases the downwelling longwave component using an enhancement factor,
such that
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-
a

Oro=0r4,. |1+ Z i |, (8.26)

where 7; is the cloud fraction for a given atmospheric layer (low, middle, high),
and the ¢; values are given by

Cloud level ¢

Low (i=1) 0.26
Middle (i=2) 0.22
High (i =3) 0.06

The cloud lavers are typically defined based upon the maximum relative
humidity between specified pressure levels. The influences of clouds on radia-
tion are discussed more fully in the following chapter on cloud cover.

8.3.2 Two-stream methods for clear skies

The other approach to parameterizing the longwave radiative flux is based
upon solving the radiative transfer equation as discussed by Liou (1980). The
discussion in this section is largely based upon Stephens (1984) and Ellingston
et al. (1991). The equations appropriate for longwave flux are

_/' 2B, (0)7 (= ol(fwj / 7B,(z ”;P"(:___—W d= dv. (8.27)
0 ) -

) C,odT
Fp(z) = ] / B, ,KE—I"\:.: ) =" dv, (8.28)
iz

=
=
|

where F;-and Fp are the upward and downward fluxes through height z, B, is
the Planck function, and 77 is the diffuse transmission function defined over a
hemisphere. The first term in Fy represents the attenuation of the longwave
radiation emitted from the Earth’s surface, while the second lerm represents
the emittance of longwave radiation by the atmosphere. The single term in Fp
represents the atmospheric contributions only. The diffuse transmission func-
tion 1s written as

=2 / oz 2 ) pod (8.29)
Jo
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where™ 1= cos(() and

Tz p)=expi—— / ke (p. T) dul. (8.30)

i -” U Z

L

in which &,(p. T) is the absorption coefficient (a function of pressure p and
temperature T) and u is the concentration of the attenuating gas along the path
from = to /. The different parameterizations for longwave radiation differ in
how these four integrals are calculated. owing to the need to minimize the
computational costs. However. several common assumptions are found within
these schemes.

The first common assumption is that one can replace the integration over all

]

zenith angles in the 7(z. /) equation with the simplification
.y xr (.2 1/3). (8.31)

where 7 is the diffusivity factor and is equal to 1.66. This states that the
transmission of flux through the slab from z to =’ is equivalent to the transmis-
sion of a beam along the zenith angle { =cos '(1/3). This has been found to be
a very reasonable and useful approximation (Rodgers and Walshaw 1966; Liu
and Schmetz 1988).

The second group of common assumptions involves the integration of the
absorption coefficient over the optical path. While it is known that &, 1s a
function of p and 7. laboratory data used to calculate &, are determined using
constant values of p and T instead of the rapid changes observed in the atmo-
sphere. Two common approximations used to determine 7,(z, Z', p), the
scaling and the two-parameter approximation, both assume that absorption
along a non-homogeneous path can be approximated by absorption along a
homogeneous path using adjusted values of p and 7.

The scaling approximation assumes that the absorption coefficient depends
only upon the value of k&, at reference p and T and the concentration of the
altenuating gas 1. Thus, the scaling approximation assumes

- " Y- " ) .
kip. T) =k, (py. Tolii = ku[po- To) / ([£> (%) dut. (8.32)
Juizy 70

where 77 and n are constants that are specified for various absorbing species
and range from 0 to 1.75 for 7 and from 0 to 11 for m. The variable # is the
adjusted concentration of the attenuating gas u. The variables py and Tj are the

In radiative transfer discussions. this polar angle is measured relative 1o a beam pointing upwards, so ¢ —0
and =1 for a beam pointing upwards. and {=m and p= —1 for a beam pointing downwards.
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reference pressure and temperature. Goody (1964) provides further informa-
tion on this approximation.

The two-parameter approximation was proposed by Curtis (1952), Godson
(1954), and Van de Hulst (1945) and so is often called the VCG approximation.
It allows for more accurate approximations of the path integral by using two
parameters to relate the absorption along a non-homogeneous path to that of
a corresponding homogeneous path. It assumes that the mean transmission
between two levels is the same as 1 all the absorbing gas along the path were at
a constant pressure (Rodgers and Walshaw 1966). Thus, it adjusts both the
path & and the pressure p according to

pu :/p du
(8.33)

i :ffilz.

This adjustment is found by matching the absorption in the strong and weak
limits. Thus, instead of the path integral only depending upon the absorber
concentration as in the scaling approximation, it now depends upon both the
absorber concentration and the mean pressure.

A third method also has come into use recently. Instead of scaling a refer-
ence set of &k, values as a function of v and p, a third method linearly
interpolates between stored sets of k,, values that have been previously calcu-
lated over the full range of atmospheric conditions. The generation of these
stored sets of &, values is a significant overhead cost, and requires the use of
a very computationally expensive line-by-line radiative transfer model.
Presently. this approach is used only in the rapid radiative transfer model
(RRTM) as discussed in Mlawer et al/. (1997).

Now that we have approximations that allow for easy calculation of the
transmissivity function, the integrations over frequency remain. This is where
the differences in the parameterizations are more clearly seen. The problem of
integrating over frequency is more complex than simply averaging &, over
some interval Av. As illustrated by Stephens (1984), there are four distinguish-
able frequency scales that must be taken into account when making this
calculation. These scales range from the smoothly varying Planck function
to the rapidly varying absorption lines for the different absorbers (Fig. 8.5). As
discussed by Liou (1980), the examination of high-resolution spectroscopy
shows that the emissions of certain gases are composed of a large number of
characteristic spectral lines. These lines occur because each quantum jump
between fixed energy levels within an electron results in emission or absorption
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Figure 8.5. Schematic diagram illustrating the different frequency scales
involved in the calculation of atmospheric longwave flux. These frequency
scales are (a) the Planck curve, (b) atmospheric gaseous absorption spectrum
for longwave radiation reaching the ground surface, (c) the individual
absorption lines and line separations found when looking at very small
frequency intervals, and (d) the convolution of the Planck function and the
atmospheric absorption spectrum to give the atmospheric longwave flux
(shaded area). From Stephens (1984).

of a characteristic frequency, which then appear as absorption lines. Two
general parameterization approaches are used to surmount the challenges
provided by these widely varying functions included in the frequency integra-
tion. The first approach is to divide the Planck function into a number of
discrete intervals, define the absorption characteristics of each interval sepa-
rately, and sum the resulting values (narrow-band models). The second
method is to convolve the absorption and Planck functions and mntegrate
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this quantity over large portions of the longwave spectrum (wide-band
models). We begin by looking at the narrow-band models.

8.3.3 Narrow-band models

Band models use average absorption properties for bands of lines that are
specified by well-defined statistical relationships. The resulting transmission
functions are defined as (Stephens 1984)

~Sus Sus\
r, = exp| ?” (1 fsi) A (8.34)

¢ T

where the overbar represents an average over Av. Sis a mean line intensity, é is
a mean line half-width. ¢ is a mean line spacing, and /3 is the diffusivity factor.
The various values of §/d. and za/d for the two water vapor bands, the 15 um
CO- band. the 9.6 um O band, and the 6.3 ym water vapor vibration band are
found in Rodgers and Walshaw (1966), Goldman and Kyle (1968), and Wu
(1980). One requirement of band models is that the Planck function must be
treated as 4 constant across the frequency interval selected. often leading to the
need for narrow frequency bands. It is also limited by the behavior of the
transmission function. which does not take an exponential form across broad
spectral bands. While Rodgers and Walshaw (1966) used only 21 intervals to
span the longwave absorption spectrum, the computational efforts required
are still very expensive for operational considerations. Morcrette and
Fouquart (1985) use over 300 bands to explore systematic errors in longwave
radiation calculations.

An alternative approach to the narrow-band method that is demonstrably
faster and more accurate is the correlated-k, or k-distribution, method. This
method uses the fact that the transmission within a relatively wide spectral
mterval is independent of the ordering of the values of the absorption coefficient
k, with respect to v. Thus. for an assumed homogencous atmosphere, the
transmission depends on the fraction of the selected interval f{k) that is asso-
ciated with a particular value of k. This approach groups frequency intervals
according to line strengths, and the transmission function is rewritten as

. | - Do -
.2 = /e_"“" dy = /)’I\fc)e Rk (8.33)
) Av Ja, 0

Thus. instead ol integrating over frequency. one integrates over the absorption
coefficient values (Fig. 8.6). Errors associated with the correlated-k technique
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Figure 8.6. Absorption coefficients duc to carbon dioxide for a layer at
507 hPa in the middle of summer (a) as a function of wavenumber, and (b)
after being rearranged in ascending order for the spectra range 630-700 cm ™"
From Mlawer er al. (1997).

are at least a factor of two smaller than most other band models, and the
technique is computationally faster as well. Lacis and Oinas (1991) suggest
that the correlated-k technique produces results to within 1% of a line-by-line
radiative transfer model (LBLRTM). while Fu and Liou (1992) explore the
mathematical and physical conditions under which the method is valid and
find that it works well for atmospheric radiative transfer. Differences in cool-
ing rates between the rapid radiative transfer model (RRTM), which uses this
approach, and 2 LBLRTM are typically less than 0.15 K day™' for clear skies
(Mlawer er a/l. 1997).

The main differences between the various narrow-band models are the num-
ber of frequency bands used in the calculations, whether the scaling or two-
parameter approximation is used for the optical path integration, and the data
sets used to generate the transmission functions for the spectral intervals,
However, other details can also be important. As pointed out by Stephens
(1984). while the absorption in the “atmospheric window™ between 8 and
14 um is weak, 1t is important to reproduce it accurately as significant amounts
of radiant energy are exchanged between the ground surface, clouds, and
space. Another concern is the method by which the transmission of two
different gases that absorb radiation in the same spectral interval (e.g., H-O
and CO-) is handled. Please refer to Stephens (1984) and Ellingston et al.
(1991) for further discussions and details on these narrow-band methods. In
addition, Edwards and Slingo (1996) develop a two-stream radiation para-
meterization in which the spectral resolution of the code is variable, allowing
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for one to evaluate the sensitivity of radiative transfer calculations to changes
in the parameterizations of the physical processes.

8.3.4 Wide-band models (emissivity models)

Narrow-band models are limited by the need to define a frequency interval
that is narrow enough that the Planck function can be treated as a constant
across the interval. In addition, the transmission function is no longer expo-
nential across broad intervals, further limiting the width of the bands that can
be used and thereby increasing the computational cost. A function that largely
overcomes these limitations is emissivity, the ratio of the power emitted by a
body at a given temperature 7 to the power emitted if the same body obeyed
Planck’s law.
Emissivity ¢ is thus defined as

, | )
gz = / Az, 2 YynB,(T) dv, (8.36)
0

6T

where 4,(=1— 7g) is the absorptivity of the gas. This allows us to rewrite the
radiative flux equation following Stephens (1984) as

. o - . de \
Fr(z) =T (1 —2(z.0)) + / 67_4{:!)%{:.3;) d', (8.37)
- 40 oz
. N4 de \
Fp(z) = / cT (') %{:‘:’} d'. (8.38)

Note that the integration over frequency has now vanished from the radiative
flux equations! Emissivity has physical significance and can be measured,
although there is a fair amount of ambiguity in these measurements when
gas emissions overlap. However, the solution of these flux equations is easy
given the emissivity as a lunction of the absorber concentration u (Charlock
and Herman 1976; Sasamori 1968; Staley and Jurica 1970).

As an example. Rodgers (1967) develops an upward and downward emis-
sivity as

N
s(u) = bu(ln(u)". (8.39)
n=>0
where u is the water vapor path and b, are constants that depend upon
temperature. For  less than 10 gm ™, an alternative expression is used such
that




8.3 Longwave radiative flux 323
N _
e(u) = Z anu"?, (8.40)
n=1

where «,, are constants that depend upon temperature. The variable N is the
number of terms in the polynomial expansion and equals 4 in Rodgers (1967).
This approach is used by Dudhia (1989) in a mesoscale weather prediction
model.

One challenge to the broad-band method is that it is not always simple to
obtain expressions of emissivity as a function of absorber concentration u that
are sufficiently accurate to obtain precise values of de/du or de/dz. If instead a
modified emissivity is defined as

b /Z o dB,(T) dV_R(:.:’j
o i“l“-'-)ia'a]“‘{:’)  4eT?

(8.41)

where R(z, Z’) is the mean absorptivity parameter (Elsasser and Culbertson
1960), then an integration by parts of the original emissivity form of the flux
equation yields

Fy(z) = GT:: + /:s"(:.:’)dig&—) dz . (8.42)
g . :
. X d) Zf
Fp(z) = / 8’[:.:’)r—j;i(~—) dz'. (8.43)

While ¢ is not directly related to ¢, it also doesn’t greatly differ from e. Indeed,
Ramanathan ez al. (1983) define the relationship

i

&

(8.44)
where u is the absorber concentration, which allows us to convert from one
emissivity to the other. Rodgers (1967) shows that the flux calculations are
most accurate when ¢ is used to calculate F;; and ¢ is used to calculate Fp.

Another widely used emissivity-based approach is the simplified exchange
method (SEM) of Fels and Schwarzkopf (1975) and Schwarzkopf and Fels
(1991). This method recognizes that, in many situations, the dominant con-
tribution to atmospheric cooling rates at any given height is from the “cool-to-
space” (CTS) term (Fig. 8.7) as discussed by Rodgers and Walshaw (1966). The
total cooling rate O can then be divided into two parts

0 = Qox + Qcrs;, (8.45)
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Figurc 8.7. The contribution to the specified 3km deep layer longwave
radiative cooling from the laver itself (shaded) and the absorption of
longwave radiation from adjacent 3km deep layers (left). Shaded areas
denote cooling. whereas the open areas denote warming from the adjacent
layers. Also shown 1s the spectral distribution of the cooling/heating for the
three 3 km deep lavers (right). Cooling to space is the largest contribution in
cach of the three layers shown. From Stephens (1984) as modified from Wu
(1980).

where Q.. is the exchange term and Q75 is the cool-to-space term. Since Q¢ rs
is the dominant term. it needs to be calculated very accurately. In contrast, Q..
can be calculated using approximate techniques with little loss of accuracy.
This division of the calculation into accurate and approximate approaches is
the key characteristic of this approach (Fig. 8.8). Thus, one can calculate Q...
usimng

Oex = 0 = Oprs: (8.40)

where both Q° and Q' are determined using broad-band emissivity meth-
ods. The Q¢ s term is calculated using

oT
E ZBHTJ

for an isothermal atmosphere at temperature 7. where n is the number of
frequency bands. This equation is used to determine the cooling rates at every

7 (0.p). (8.47)
ap
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Figure 8.8. Schematic diagram of the two different contributions to the radiative
cooling of a laver in the atmosphere. One contribution is the cooling to space,
which occurs mainly in the transparent regions of the absorption spectrum.
The other contribution is by mutual exchange between layers, say layers A and B,
as illustrated. After Stephens (1984).

level in the model. even when 7 1s not constant. The computational efficiency
of this CTS term compared to other emissivity methods is that the cooling rates
are a function of T and only depend upon the absorber concentration above
the level in question. Thus, the CTS term is calculated using multiple bands,
while the broad-band emissivity method is used for the exchange term. This
vields computational efficiency and accurate calculations.

The above discussion outlines various approaches to longwave radiative
flux calculations that apply to any given layer of the atmosphere. To incorpo-
rate these equations into a numerical weather prediction model, the values of
F-and Fpare calculated at each vertical model level. Then the heating rate is
calculated from the {lux divergence between every two vertical levels using a
finite-difference form. Stephens (1984) suggests that around a dozen or so
vertical levels are needed for relatively accurate calculations if there are no
significant discontinuities in moisture or temperature in the vertical direction.
But computational efficiency is always a concern, leading to efforts to develop
very fast radiation paramelterizations (e.g., Harshvardhan et al. 1987).

Ellingston et al. (1991) discuss results from an international project to
compare radiation codes used in climate models under clear-sky conditions.
Fifty-five separate cases are used to compare the various methods, represent-
ing a range of conditions. Results indicate that the line-by-line models and the
narrow-band models agree to about =2% for fluxes at the atmospheric
boundaries and to aboul £3% for the flux divergence in the troposphere.
However. only five wide-band models are found to match the performance of
the narrow-band models. Many of the less detailed parameterizations display
a spread of 10-20% in their calculations. However. many changes have
occurred since 1991. First. the parameterizations have constantly evolved
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over time, such that results with newer schemes should be an improvement
over those shown by Ellingston et al. Second, the Atmospheric Radiation
Measurement Program (Stokes and Schwartz 1994) has assisted in funding
further refinements to radiation parameterizations and more detailed compar-
isons with observations.

8.4 Shortwave radiative flux
8.4.1 Empirical methods

As with longwave methods, the simplest of the shortwave radiation para-
meterization schemes only predict the total shortwave radiation that reaches
the Earth’s surface. These schemes do not incorporate the effects of shortwave
absorption on atmospheric diabatic heating. They can be based upon detailed
comparisons with more complex shortwave radiative transfer models, or upon
comparisons with observations. Regardless of the specific approach, their
main advantage is their computational efficiency.

Anthes er al. (1987) present a fairly typical approach to calculating the
amount of shortwave radiation that reaches the surface. They approximate

Os = So(1 — a)Tcos((), (8.48)

where Sy 1s the solar constant, a is the albedo, ¢ is the solar zenith angle, and 7
is the shortwave transmissivity. This transmissivity term is based upon the
work of Benjamin (1983) for multiple reflections and is defined as

T=T,7 + (1 —7)(1 =) /(1 — Xra), (8.49)

where 7, 1s the absorption transmissivily, 7 1s the scattering transmissivity, b is
the backscatter coefficient, and X is the multiple reflection factor where

XR = Tar!(l - Tscf_}bd‘ (850)

The 7.4 74 and by terms refer to absorption, scattering, and backscatter
parameters for diffuse radiation. These clear-air transmissivities (7, Ty Tad,
T,4) are functions of path length and precipitable water as found from the
Carlson and Boland (1978) radiative transfer model.

Benjamin (1983) also presents a scheme to alter the shortwave radiation
based upon the amount of cloud cover. Three layers of cloud are allowed,
depending upon the atmospheric pressure: low clouds for pressures greater
than 800 hPa, middle clouds for pressures between 800 and 450 hPa, and high
clouds for pressures below 450 hPa. He then defines
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Table 8.1. Values of absorption and scattering transmissivity
parameters for determining the total transmissivity when
clouds are present from Benjamin {1983 ).

Cloud level T i T

i fsf

Low (i=1) 0.80 0.48
Middle (i=2) 0.85 0.60
High (i =3) 0.98 0.80
Toe = H 1= (1 = 7g)|my, (8.51)
Tse = H :1 - (1 - Tsf)]nif (8.52)
i=]

where 7; is the cloud fraction (0 to 1) for each of the cloud lavers and is based
upon the maximum relative humidity value in each layer, and the absorption
transmissivities for each layer are predetermined and shown in Table 8.1. The
total transmissivity for a cloudy atmosphere is then defined by

TacTseTalTs + (1 — 1) (1 — b)]

T = - , 8.53
]l — Xca ( )
where
Xc= Taa’far(l - 'f—sd'*'sr)b_dz (8.54)
and
i Ie — T \ T 1 = Tsc -
by = ball ~ 75a) + ( ) (8.55)

(1 - Tsra’) - (1 - Tsc') )

It should be noted that applyving fixed, predetermined shortwave character-
istics to clouds is problematic. The radiative properties of clouds change with
the changing cloud character and with zenith angle. Thus, determining just
what values for transmissivity should be used is not clear and these approaches
without doubt do not work well in all circumstances.

Savijirvi (1990) presents a slightly more detailed approach for clear skies,
defining
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Os = Sy sin(_is‘,‘ni I —0.024(sin(h)) ™" = 0.1 I(mfu__,-"'sin[f’zj}o")
— as(0.28/(1 + 6.43sin(h)) — 0.07a)]

where

0 . s
_ T p 0SS 273N dp .
' / ._ {fk\i(}l_%) ( y-) P (8.57)

is a scaling approximation that represents a linearly pressure-scaled vertical
water vapor amount (cm). and /7 is the local hour angle of the sun. This
equation accounts for Oz, H-O. and CO, depletion as well as Rayleigh
scattering. The parameters «e and as (both > 1) represent a crude inclusion
ol aerosol absorption and scattering, respectively. Savijirvi suggests that the
best results are found with ¢e=1.2 and as=1.25 for continental indus-
trialized areas.

Unlike the Anthes er /. approach. Savijirvi also includes a simple para-
meterization for solar heating in the atmosphere, using

)T ‘p\ T . N 03
L_C.)—] = 8 (;—I) (/%) !_‘rsi:jjfz_i- + 1.67ay(wu. ]smu;\h,']j + 1.7 x 107%[sin(h)]"

(8.58)

where u, 1s v calculated from the surface to the top of the atmosphere, and

00296 % 4 > 0.05 em

= . 8.5¢
I { 0.05067%% 1 < 0.05cm. (8:59)

The Atwater and Ball (1981) constant cloud transmission functions are recom-
mended when clouds are present.

Finally. the last example for the empirical approaches is from Dudhia (1989),
who provides a slightly more complex one-stream approach. He defines

g

Fp(z) = nSy — / (dS.; + dS,, — dS, + dS,). (8.60)
where S, and S, are the decreases in irradiance from cloud scattering and
absorption, and S, and S, are the decreases in irradiance from clear-air
scattering and absorption. The parameterization assumes that the cloud frac-

tion is either 0 (no cloud) or 1 (overcast) for each grid point.
The scattering and absorption coefficient values are bilinearly interpolated
from Stephens” (1978b) tabulated functions of 4 and the natural logarithm of
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the liquid water path for cloudv conditions and from the Lacis and Hansen
(1974) absorption function for clear-air conditions (which requires p and the
water vapor path). Dudhia indicates that the total effect of a cloud layer
above a height = Is obtained from the above function as a percentage of the
downward solar flux that is absorbed or reflected by clouds. Then at height
- — Az, anew total percentage is determined that incorporates the absorption
and scattering effects of the laver Az. Thus, the clear-air effect above z is
removed since clouds are present. Clear-alr scattering is assumed to be uni-
form and proportional to the atmospheric mass path length, allowing for
zenith angle effects, with 10% scattering occurring in one atmosphere. The
atmospheric heating rate is computed from the vertical change in the absorp-
tlon terms.

8.4.2 Two-stream methods in clear skies

The parameterization of shortwave radiative flux has many similarities to the
parameterizations for longwave radiative [lux discussed previously. However.
instead of being grouped into general types (narrow-band. broad-band). the
schemes are named (Eddington, delta-Eddington, quadrature, hemispheric.
two-stream) based upon the choices made in approximating the effective
zenith angle for the stream directions and how and when the single-scattering
phase function is approximated. This definitely lends a different flavor to the
literature.

Unlike longwave radiation. both absorption and scattering are important
processes for shortwave radiation and need to be included. Stephens (1984)
indicates that Rayleigh scatter is dominant only for the shorter wavelengths,
while liquid water absorption in clouds occurs only for the longer wavelengths,
leading to a natural division on either side of the 0.7 um wavelength. The
transfer of shortwave radiation is not as complex as longwave radiation, since
the problem of the simultaneous absorption and emission of radiation from
laver to laver does not occur. Thus. although not as computationally demand-
ing as longwave schemes. shortwave schemes still require substantial computer
time and approximations are needed to produce schemes that can run within
operational models.

Following the discussions of Stephens (1984) and Pincus and Ackermann
(2003), the shortwave irradiance is often separated into direct (dir) and diffuse
(dif)y components, where the direct component represents the contributions
from photons that have not been scattered. Thus.

H7ope0) = Ty (1o e @) + Ly 7.1t @) (8.61)
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The direct component follows Beer’s law, such that the irradiance reaching a
given level z is given by

Fp(z. ) = ,UU/ Sy (00) 1z, 00, o) dv, (8.62)
0
where
_ . 1 =
Tz, 00, p) = exp (— — [ k., du). (8.63)
Ho J -

While problems similar to those found in calculating longwave radiation are
present in the path and frequency integrals, the values of S,(cc) are known and
specified a priori. One can use a narrow- or broad-band approach to calculate the
integral. The correlated-, or k-distribution, method also can be used to improve
the accuracy and speed of the calculations for shortwave radiation.

In addition, Stephens (1984) indicates that the effects of pressure and
temperature on £, are only a complication for water vapor absorption.
Thus, if desired, one can define a mean transmission function

1 . >* .
T5(z, 0, o) =X . exp(—mr{g@)[ k, a’u) dv, (8.64)

where m1,(110) 1s a relative air mass factor and differs from 1/ug only at large
zenith angles greater than 757 (and for ozone - see Rodgers 1967). This could
be considered a broad-band approach.

With these assumptions one can then rewrite the integral over frequency asa
summation and obtain

N
Fo(z) = o Y _ Si(o0)msi(u), (8.65)
i=1

where Nis the number of frequency intervals and  is the absorber path length
from = to oc along the zenith angle.

Since the direct component of radiation follows Beer’s law, and therefore is
relatively easy to code, most of the literature describes the ways in which the
diffuse component of shortwave radiation is handled. The azimuthally aver-
aged monochromatic radiative transfer equation for a given frequency v is

il o awg [T , 0.5 »
pom= I + 2 [ Bl ) dl +° jnoﬁ('ﬂ p. po)e T,
“ J-1

dr
(8.66)
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where @y is the single-scattering albedo, which is the likelihood that a photon is
scattered rather than absorbed at each interaction (and varies from 0 to 1), p is
the scattering phase function that characterizes the angular distribution of the
scattered radiation field, S is the solar constant (W m =), and i is the cosine of
the zenith angle of the sun as always. To obtain the irradiance, this equation must
be integrated over frequency and zenith angle. The first term on the right-hand
side is the diffuse radiation that enters into the layer in question. The second term
represents the increase in diffuse radiation from multiple scattering, while the last
term represents the increase in diffuse radiation from single scattering of direct
solar radiation. Thus, it is easy to see how scattering complicates the calculations.
In addition, since the intensity [ appears on both sides of the equation, this an
integrodifferential equation which is quite difficult to solve.

The optical thickness 7 now includes contributions from scattering and
absorption. The scattering phase function p describes how likely it is that
radiation traveling in the (i', ¢') direction will be scattered, by molecules or
cloud droplets, into the (u, ¢) direction. The value of a phase function can vary
over several orders of magnitude as the scattering angle is varied and illustrates
complex behavior. Analytic formulas are used to approximate the phase
function and can be compared against a full Rayleigh or Mie scattering
calculation for accuracy. Thankfully, the exact nature of the scattering phase
function is not incredibly important, as multiple scatter tends to smooth out its
peaks when hemispheric integrals are calculated. This is a key point, since the
full scattering calculations show a great deal of structure in the scattering
phase function. Yet itis clear that the scattering phase function approximation
used does make a difference in the accuracy of the results.

The phase function can be described in terms of a scattering angle © between
the incident and scattered radiation from a frame of reference centered on a
particle. A useful parameter to use in describing the phase function is the
asymmetry parameter g, such that

I
g= ;—/ cos © p(0) dcos O, (8.67)
-1

which varies from —1 for complete backscatter, to 0 for isotropic scatter, to +1
for complete forward scatter.

8.4.3 Eddington approach

As discussed earlier, the schemes are named based upon the choices made in
approximating the various terms in the integrals for the shortwave radiation
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flux. The Eddington approximation as discussed by Pincus and Ackermann
(2003) uses an expansion for both intensity and phase to first order, such that
each varies linearly with g as

Ip)y=1Iy+ Ly
’_ . (8.68)
Plrpopn) =14+ 3guy’.
This yields for the diffuse radiative transfer equation, after evaluating the
integral and rearranging some terms,
diy S dI _ _ oy . i
m— = Ip{l —wn) + Ll —ang) — — (1 = 3guug)Spe ™*

M?_? el 4 b

i

(8.69)

A pair of equations for /; and 7, are obtained by first integrating over y from
—1 to 1 and then multiplying by ¢ and again conducting this same integration.
This vields

dly 3o B

— = (I —wog}ly = ——guoSoe™ 1.

o ST (8.70)
dry RION) o
__:3:}.— Jy \:'{"_—.S-r >~ T

T s Wy 1y 4: (€ (8?[)

These two first-order equations in [y and /; can be solved, following Shettle
and Weinman (1970), providing solutions that are a sum of exponentials in 7,
such as

Iy = A" — Be™N £ e T, (8.72)

where 4. B. and ¢ are determined from the boundary conditions at the top and
bottom of the atmosphere and from the particular solution.
The diffuse irradiances ({luxes) are then computed from /; and /, using

1 ; >
Fplmowg. g.1y) = 2:/ (g + ply e dp = R(J’g . %1’}). (8.73)

1

: 7
Frir g, g o) =27 [ (ly + pd)p die = H(IU — ;1’]). (8.74)
40 . 2
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Since different frequencies are associated with different parameter values for
g, g. and 7, these expressions for Fp and F;- must be integrated over all
frequencies to get the total diffuse irradiance.

8.4.4 Delta-Eddington approach

The Eddington approximation is not as accurate as many would like, and
particularly has problems in optically thin atmospheres and when large
absorption is involved. so Joseph er al. (1976) develop a modification to the
phase function that performs better. The original phase function approxima-
tion, which contains a large and narrow forward peak in scattering. is replaced
with a delta function in the forward direction and a smoother scaled phase
[unction elsewhere. This results in a new approximation for the phase func-
tion. such that

pleosO) &= 2f0(1 — cos @)+ (1 —f)(1 + 3¢ cos O). (8.75)

where /'1s the fractional scattering into the forward peak. @ is the Dirac delta
function, and g’ 1s the asymmetry factor of the truncated phase function
(Pincus and Ackermann 2003). Joseph er «/. (1976) require that this phase
function have the same asymmetry factor (g) as the original phase {unction,
which defines a specific relationship between g’ and g. They also define f=g°.
When all the equations are derived, it is seen that this approach just rescales the
original Eddington solutions.

One application of the delta-Eddington approach is discussed by Bricgleb
(1992). In this parameterization, originally developed for the NCAR
Community Climate Model version 2 (CCM2), the solar spectrum is divided
into 18 bands. Seven bands are for Os, one band for the visible, seven bands are
for H>O. and the final three bands are for CO. The model atmosphere consists
of a discrete set of horizontally homogeneous layers. The delta-Eddington
solution consists of evaluating the solution for the reflectivity and transmis-
sivity of each layer, and then combining the layers together to obtain the
upward and downward spectral fluxes. This is repeated for all 18 spectral
bands to accumulate broad-band fluxes. from which heating rates then can
be calculated.

8.4.5 Two-stream approach

While the terminology is a little bit conlusing, there is another method to solve
the radiative transfer equation that is called the two-stream method (Liou
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1980). This should not be confused with the general idea that most methods
used to solve the radiative transfer equation consist of calculating two streams
of radiation: one in the upward direction and one in the downward direction.
This “two-stream™ method is just one particular approach to solving the same
problem. While the Eddington approach expands the intensity and phase into
first order in angle, the two-stream model first averages the radiative transfer
equation and phase function over each hemisphere to obtain the radiative flux,
and then computes the solution. Thus, the azimuthally averaged radiative
transfer equation is integrated over the hemisphere to obtain the upward and
downward fluxes, leading to two separate equations

_dF , . T i
[ dTD = Fp —wy(l — b)Fp + wybFy — 2—?2 11— b(po)] Soe™ 4, (8.76)
_dFy . . g L
—— = Fp —op(l —b)Fp + wobFp — —b(ug)Spe™ ™,
H - v @l JEp + WolLp o (1) Soe : 8.77)

where b is the backscattering coefficient (Pincus and Ackermann 2003). These
are two first-order, linear coupled differential equations with constant coeffi-
cients. The solutions are found by uncoupling the equations through differ-
entiating with respect to optical thickness, and then substituting the other
equation. The solutions end up being a sum of exponentials in optical thick-
ness, just as found for the Eddington solutions.

All two-stream methods can be generalized to a generic form, where

(ETF(_' SO - -/

— Y Fu— 70 Fp + 2 igye M, .
o g 728D+ Wp7s€ : (8.78)
IF So - ¢

"d_” = v Fp— 7, Fp + —212(:)0}'48_'T" Mo (8.79)

provided that an explicit assumption is made regarding the dependence of /
upon p. Values of reflectance R and transmittance 7 can be derived directly
from these equations. The heart of these two-stream approaches is a suitable
choice of 7, @y, and g for each spectral interval and absorber. Note that the
heating from CO; and O- absorption lines is usually added to the heating by
water vapor absorption, since the contributions of both CO» and O, to solar
heating are small (Stephens 1984). Meador and Weaver (1980) derive the
various formulas for numerous two-stream approaches and discuss the differ-
ent assumptions that go into their development.
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The above discussion outlines several approaches to shortwave radiative
flux calculations that apply to any given layer of the atmosphere. To incorpo-
rate these equations into a numerical weather prediction model, the values of
Fp and Fp again need to be calculated at each vertical model level just as is
done for the longwave flux. However, this is more complicated than the
calculations for longwave flux, owing to the effects of multiple scattering
that must be taken into account. The two-stream solutions discussed above
apply to a single homogeneous layer with fixed values of 7, &y, and g, and so
the challenge is to combine several layers with these varying optical properties.
Several different techniques are available that can be used for this purpose.

The adding method is one approach to calculating the shortwave radiative flux
across multiple vertical levels. Take two adjacent vertical layers in the atmo-
sphere. The upper layer has transmittance 7, and reflectance R;, while the lower
layer has transmittance 75 and reflectance R». To find out how much total flux is
reflected from this combination of layers, we examine the multiple reflections.
First, some of the flux that enters the upper layer is reflected immediately (R)).
However, some is also transmitted through the layer, is reflected by the lower
layer, and then transmitted back through the first layer (77R,T7). Some of this
flux is reflected back from the upper layer and again reflected back from the
lower layer, finally passing through the upper layer (77 R,R; R»T;). This process
goes on and on (Pincus and Ackermann 2003), yielding

Rr=R +T1\RT1 + TRy RiR Ty + THRRIRo Ry RTy + - - -

_ 1 (8.80)

Rr=Ry + T{Rgvl +RiR| T
This equation for total reflectance is combined with its analog for transmit-
tance with the delta-Eddington or other two-stream models to compute the
transmittance and reflectance of layered atmospheres. The adding-doubling
method extends this general approach to intensity (Pincus and Ackermann
2003). Stephens (1984) illustrates that an equivalent approach is to consider
the atmosphere as a system of n homogeneous layers with specified values for
reflectance and transmission. This allows one to construct an equivalent linear
system of 3n -+ 3 equations, the solution of which produces the equivalent
adding algorithm. Pincus and Ackermann (2003) also discuss an eigenvector
approach termed the discrete ordinate approach.

8.5 Radiative transfer data sets

Numerical weather prediction models provide the vertical profiles of tem-
perature, pressure, and water vapor mixing ratio needed for longwave and
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shortwave radiative transfer calculations under clear skies. but gas and particle
concentrations also are needed in these calculations. Of the gases important to
radiative transfer calculations. carbon dioxide and oxvgen are considered

ermanent constituents of the atmosphere and have nearly constant volume
ratios up to 60 km (Liou 1980). Although the concentration of carbon dioxide
does vary shehtly throughout the annual cycle (variations of ~6 parts per
million (ppm) by volume with a concentration of ~375 ppm in 2004), it also
has been increasing throughout the years owing to the burning of fossil fuels
and these changes are estimated for use in global climate models. In contrast,
ozone is more variable in time and space. although 1t typically resides at levels
between 15-30km above ground. This variability requires that the ozone
distribution be specified in the numerical model through reference to typical
distributions (e.g. London er ¢/. 1976). Total column ozone concentration also
can be observed by satellite (Heath er a/. 1973). but the radiative transfer
calculations still need the vertical distribution. Jang et al. (2003) suggest that
this can be estimated from vertical mean potential vorticity and show that the
inclusion of real-time ozone data into a numerical weather prediction model
can lead to improvements in forecasts. At present. operational models gener-
ally use an ozone climatology.

Finally. aerosols are important to shortwave absorption and scattering.
Aerosols can scatter and absorb shortwave radiation, thereby changing the
diffuse fraction of the shortwave radiative {lux and influencing the terrestrial
carbon cycle (Nivogi ¢f /. 2004). In addition, aerosols can act as condensation
nuclei for cloud droplets. thereby enhancing the amount of cloud cover, and
influencing cloud lifetimes and precipitation efficiencies (Twomey 1977:
Albrecht 1989). Some aerosols are created by natural processes, such as from
sea spray. dust. smoke from natural forest fires. chemical reactions, boreal
forests. and volcanic eruptions. Other aerosols are produced by humankind as
a consequence of fuel combustion and are often commonly referred to as
pollution. Obviously aerosols also can vary greatly in time and space. In
general. aerosol concentrations in the tropospherc are much greater than
those in the stratosphere. except after volcanic eruptions. Tropospheric aero-
sols have lifetimes of several days. emphasizing their variability. Most models
presently use typical aerosol distributions in the radiative transfer calculations,
while developers are moving to include real-time total column aerosol con-
centrations based upon satellite data in combination with information from
climatology or surface aerosol observing networks such as the Aerosol
Robotic Network (AERONET:; Dubovik and King 2000) to provide the
distributions needed for radiative transfer calculations (sce King er al. 1999;
Al-Saadi er al. 2003).
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8.6 Discussion

Relatively sophisticated and computationally affordable radiative transfer
parameterizations have been developed for both the shortwave and longwave
radiation components. These schemes provide the net surface radiation for the
land surface schemes, which is partitioned into the total available energy for
sensible. latent, and ground heat fluxes. and the vertical radiative flux diver-
gence, which is used to calculate the radiative heating and cooling rates of a
given atmospheric volume. Errors in the net radiation clearly influence these
surface flux amounts and feed back to influence boundary layer structure and
depth (Guichard er al. 2003; Zamora ¢! al. 2003). and eventually even cloud
development and precipitation. Thus, accurate radiation parameterizations
are very important Lo the success of numerical weather prediction.
Comparisons of present operational and research models with observations
generally indicate that the predicted amounts of surface incoming shortwave
radiation are too large (Fig. 8.9) (Betts er «/l. 1997: Halthore er al. 1998;
Hinkelman er al. 1999: Chevallier and Morcrette 2000; Barker er al. 2003;
Marshall et «l. 2003: Zamora et al. 2003). This high bias is probably due to
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Figure 8.9. Total solar flux predicted by a numerical model (solid line) and
measured at New Hendersonville, Tennessee (asterisks) between 11 and 14
June 19935, From Zamora et al. (2003).
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either the lack of a combination of aerosol and ozone absorption (Zamora
et al. 2003) or to excessive simplifications in the shortwave radiation para-
meterization (Morcrette 2002). When the aerosol optical depths and amounts
of ozone are known, then Satheesh e al. (1999), Mlawer er al. (2000), and
Zamora et al. (2003) indicate good agreement between the predicted and
observed amount of surface shortwave radiation. Satheesh ez al. (1999) show
that the total shortwave flux decreases by 50-80 W m ™2 when including aerosol
radiative forcing based upon observed aerosol characteristics, with similar
results from Zamora er al. (2005) (Fig. 8.10). Zamora er al. (2003) further
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Figure 8.10. Correlation between aerosol optical depth and the observed
(crosses) and Eta model (triangles) solar irradiances for zenith angles of
(a) 727, (b) 61°, (¢) 517, and (d) 41°, measured on five different cloud-free
days during August 2002. From Zamora et al. (2005).
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Figure 8.11. Plots of bias (model — observed) in downward longwave
radiation (top), shortwave radiation (middle), and 2m temperature
(bottom) versus time (UTC) over the 48 h forecast time and averaged over
77 days. The models arc the NCEP Eta model and the Non-hydrostatic
Mesoscale Model (NMM). The downward longwave radiation was only
observed at a single site (Plymouth, Massachusetts). whercas the solar
radiation and the 2m temperature are averages from six sites. After
Stensrud ez al. (2006).

show that stratospheric ozone alone can reduce the surface shortwave radiation
by 20-30 W m ™. The excessive net radiation at the surface leads to predicted
daytime temperatures that are too warm (Fig. 8.11) and boundary layers that
are too deep when compared with observations (Zamora et al. 2003).

Unfortunately, aerosol optical depths vary across a large range, from 0.02 to
0.4, and are influenced strongly by both natural and anthropogenic sources
(sea salt from the oceans, mineral dust from arid land regions, sulfate and
nitrate from both natural and anthropogenic sources, and organic and carbon-
aceous particles from burning (Satheesh ez al. 1999)). Satheesh et al. (1999)
show daily variations approaching 0.2 in aerosol optical depths over the
Maldive Islands (Fig. 8.12). Yet aerosol optical depth is not commonly mea-
sured, reported, and ingested into models as part of our routine observational
system, although this may soon change (King er al. 1999).

Intercomparisons of shortwave radiation parameterizations also have been
undertaken and results summarized by Fouquart et a/. (1991) and Boucher
et al. (1998). As reported in Fouquart ez a/. (1991), even for the simplest case of
pure water vapor absorption, root-mean-square (rms) differences of 1-3%
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(~10Wm °) are found for the downward flux at the surface, with larger
differences of 6-11% for the total atmospheric absorption. The rms differ-
ences in downward flux at the surface increase to 4% for low elevation angles.
When aerosols and/or clouds are considered. the rms differences increase even
further. with clouds producing differences of up to 10% (50 Wm %) and
aerosols up 1o 21% (90 Wm 7). Fouquart ez a/. (1991) note two main causes
of the uncertainty in the shortwave calculations. First. the calculation of water
vapor absorption is critical. yet large differences exist in the various para-
meterizations. Fundamental inadequacies may be associated with detailsin the
spectral lines and/or irradiances at the top of the atmosphere, Second, that the
interactions between multiple scattering and molecular absorption are very
difticult to handle adequately with low spectral resolution methods. This is the
cause of the large rms differences when aerosols or clouds are present. Boucher
et al. (1998) compare the direct shortwave radiative forcing by sullate aerosols
in 15 different parameterizations and find a standard deviation of the
zenith-angle-averaged normalized broad-band shortwave forcing of 8%, with
somewhat larger standard deviations at some zenith angles. Most of the one-
dimensional parameterizations overpredict surface shortwave radiation by
13 25Wm - at overhead sun for a standard tropical atmosphere, regardless
of cloud cover. However. recent results by Bush er a/. (2000). Dutton er «l.
(2001). and Philipona (2002) suggest that much of this presumed overpredic-
tion actually may be due to an underestimation of the observed clear-sky
global and diffuse solar irradiance caused by pyranometer differential cooling
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Figurc 8.13. Spectrally integrated cooling rates (K dayv™") for each of the
bands 1 through 5 (10-820cm™" as indicated in the figure) caleulated by the
line-by-line radiative transfer model (LBLRTM). and cooling rate differences
(Kday™") between RRTM and LBLRTM. Note that the cooling rate
differences generally are less than 0.2 K day™' and the flux differences arc
typically less than 0.6 Wm™ * (not shown). After Mlawer er al. (1997).

when adequate ventilation and heating systems are not used. Philipona (2002)
concludes that since most pyranometers in use worldwide do not have ade-
quate ventilation and heating systems, archived global and diffuse radiation
measurements largely are underestimated.

For longwave radiation parameterizations, the results are more mixed.
Mlawer er al. (1997) show good agreement between the RRTM and a line-
by-line radiative transfer model (Fig. 8.13), while Zamora et al. (2003) show
good agreement between surface incoming longwave radiation from the
RRTM and observations. However, a broad-band emissivity parameteriza-
tion does not fare as well in the comparison as it overpredicts the mean
incoming radiation by 80 W m™ (Zamora et al. 2003). This overprediction
leads to the model being unable to develop a nocturnal stable boundary layer
and a low-level jet. Comparisons of present operational models from the USA
with observations over the New England region (Stensrud e7 a/. 2006) show
that the model parameterizations underpredict the incoming longwave radia-
tion by 10-20 Wm -, leading to surface nighttime temperatures that are t0o
cool (Fig. 8.11). Similar results are found in Hinkelman et al. (1999).

The terrain slope. orientation, and sky view also influence the amount of
radiation received at the surface. Avissar and Pielke (1989) illustrate the
importance that terrain slope and orientation can have on the incoming
solar radiation. yet these effects are not always incorporated into models.
A parameterization that includes the eflects of terrain on both longwave and
shortwave radiation is developed by Miiller and Scherer (2005) and yields
smaller 2m air temperature errors in comparison with simulations that do not
include the terrain effects.
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Surface shortwave downward flux : model-observations
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Figure 8.14. Time series of surface downward shortwave radiation
differences (simulated — observed) for 15 April through 24 June 1998 over
the Atmospheric Radiation Measurement Southern Great Plains site in
Lamont, Oklahoma. Values are 30 minute averages. Gray shading denotes
the mean daily values, using the axis on the right-hand side of the figure.
From Guichard er al. (2003).

A comparison of amounts of surface radiation versus observations suggests
that on short timescales the differences between the predicted and observed
amounts can be quite large on a large number of days (Fig. 8.14). Differences
of several hundred Wm™ in incoming surface shortwave radiation and
between 50 and 100 Wm = for incoming longwave radiation are not unusual.
Undoubtedly, many of these differences are due to clouds, which are covered
in the next chapter. While the daily average values of predicted radiation may
be relatively close to the observations, these large short timescale differences
make one wonder about how this inaccuracy in incoming surface radiation
influences the model behavior. Is it good enough to get the daily average net
radiation, or is it also important to get the instantaneous radiation amounts
correct? This is an important question for numerical weather prediction and
the answers may very well be case dependent. Certainly we have learned that
small differences over even short time periods can be important when the
weather situation is uncertain and a host of outcomes are possible. If this
position is true, indicating that a high level of accuracy is needed in the
instantaneous radiation fluxes. then we have a long way to go in developing
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radiation parameterizations with the needed level of accuracy for use in
numerical weather prediction models.

Finally, as the grid spacing in models continues to decrease, the validity of
using model data from a single vertical column (i.e., the plane-parallel assump-
tion) for radiative transfer calculations comes into question. Clearly as horizon-
tal grid spacings approach 1 km the use of a single vertical column to describe
the radiation transfer becomes fraught with difficulties, as radiation reaching a
given location on the Earth’s surface clearly passes through multiple horizontal
grid cells. Monte Carlo photon transport codes are available that track indivi-
dual photons in three dimensions from their entry points in a column to their
exit points and allow photons to move from grid cell to grid cell (e.g., Marchuk
et al. 1980; Barker and Davies 1992; Chylek and Dobbie 1995; Marshak and
Davis 2005). Another approach for three-dimensional radiative transfer is the
spherical harmonic discrete ordinate method (Evans 1998). Typically these
methods are used in situations where the plane-parallel assumption is poor,
such as when clouds are present, and are not used in operational models owing
to their computational expense. These methods are summarized and plans for
their development and testing outlined in Cahalan et al. (2005).

8.7 Questions

The basic ideas behind most of the radiative transfer parameterization schemes
are similar, so let us examine the behavior and construction of one of the
schemes. Lacis and Hansen (1974) examine how ozone and water vapor
influence the total solar flux. The fraction of total solar flux absorbed in the
/th layer of the atmosphere by ozone, where /=1 is the top of the atmosphere
and /increases downward, is defined as

A= po{A(xi1) = A(x) + Rlpo) [A(x]) = A(x7, )]}, (8.81)

where R(y1) is the albedo of the reflecting region. x;is the ozone path traversed
by the direct solar beam in reaching the /th layer, and x7 is the ozone path of the
diffuse radiation illuminating the /th layer from below. Ozone absorption is
modeled as a purely absorbing region sitting on top of a purely reflecting region.
For our purposes, all ozone is generally assumed to lie above the troposphere, or
above approximately 100 hPa. The albedo of the reflecting region is defined as

R(po) = Ra(po) + [1 — Ra(po)] (1 — ﬁa*)Rg/(_l —Ra* Rg), (8.82)

where Rg is the ground albedo, Ra* = 0.144, and the effective albedo of the
lower atmosphere is defined as
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0.219

Ra(jy) = 1+0.816u0

(8.83)

for clear skies. They also define x;= u,M. where u; is the amount of ozone in a

vertical column above the /th layer. and

5

M =- ~ = (8.84)
(12243 + 1)"/7
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is the magnification factor (Rodgers 1967) to account for path slant and
refraction. The ozone path traversed by the diffuse radiation illuminating the
[th Jayer from below is defined as

xXj = uM + M(u, — 1), (8.85)

where 1,15 the total ozone above the main reflecting layer (the ground for clear
skies). and M = 1.9 is the effective magnification factor for diffuse radiation.

Finally, the fraction of incident solar flux absorbed by the Chappius visible
band is defined as

0.02118x
A(x) = SN (8.86)
' 1 +0.042x; + 0.000323x7
and the absorption of the ultraviolet region is defined as
1.082x 0.0658x
A(x)) =- d : L (8.87)

(1+138.6x)" " 1+ (103.6x))

where the total absorption by ozone in the /th layer is the sum of the individual
absorptions from the visible and ultraviolet regions.

If we assume a single layer of ozone above the troposphere with an ozone
path x> above a single-scattering layer, then following Zamora et al. (2003) we
find that

A= po{ A(x2) + Rluo) [Ala(M + M) — A2 M]]}. (8.88)

I. Calculate the absorption of ozone for a zenith angle of 607 and for ozone path
=02, 0.3, 04, 0.5, and 0.6. Assuming a solar constant of 1368 Wm * and a
ground albedo Rg=0.10, how much does the presence of ozone decrease the
incoming solar radiation?

Now let us turn our attention to the absorption of solar radiation by water vapor.
Lacis and Hansen (1974) discuss water vapor absorption further. One formula for
water vapor absorption is

[~




Ll
Is
L

8.7 Questions

2.9y
Aly) =- NN EE . (8.89)
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where 1 is the precipitable water vapor in centimeters. The fractional absorption in
the /th laver is then defined under clear skies as

A= ,u.:,{,J (Vier) — A(vy) 4 Rg:A () — A{v, ) } (8.90)
where the effective amount of water vapor traversed by the direct solar beam is

P " -5 12

M o[y P j (Io) .
— gl — — dp, 8.91
Jo Hk}’(l/ T ! ( )
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M=

g

in units of kgm ~. and where the effective amount of water vapor traversed by the
diffuse radiation reaching the /th laver from below is

\ :
/ (; (& s T/ ! (Jp> (E) dp (892
0 [ iJ g

where p, is the ground pressure. g is the acceleration due to gravity, p,= 1013 mb,
and 75 =273.15K. One can convert y, to units of cm by dividing by the density of
water (1000 kgm ) and multiplying by 100 to convert from m to cm. Assuming the
atmospheric profile given below. calculate the heating ratc in clear-sky conditions
using 7=0. 0.5. and 1 to calculate the effective water vapor. Describe the influence
of the pressure scaling on the resulting heating rates.

The sounding to use in calculating water vapor absorption is as follows.

7 (mb) T(C) q(gkg™)
950.0 36.0 13.0
900.0 32.0 11.0
850.0 26.0 11.0
800.0 20.0 11.0
750.0 15.0 11.0
700.0 15.0 4.0
630.0 10.0 2.0
600.0 5.0 1.5
550.0 0.0 1.5
500.0 —8.0 1.0
450.0 -15.0 1.0
400.0 -20.0 0.4
350.0 —-26.0 0.4
300.0 —30.0 0.4
250.0 —44.0 0.2
200.0 —53.0 0.1
150.0 62.0 0.05
127.4 —67.0 0.05




