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Orographic drag parameterizations

10.1 Introduction

Mountains are one of the most visually stunning features of the landscape.
Created by the collision of tectonic plates and the eruption of volcanoes, and
then sculpted by rain and winds, mountains are a source of both inspiration
and wonder. The Greek gods were believed to dwell on top of Mount
Olympus, while folklore suggests that wise men and women seek mountain
tops to find solitude and ponder the fate of the universe. Yet in reality,
mountains are obstacles to most forms of transportation and acted as nearly
impenetrable barriers to many early human communities. In a similar manner,
mountains also influence the atmosphere by acting as obstacles to air flow and
their effects are included in parameterization schemes for many numerical
weather prediction and climate simulation models.

The flow ol water in a fast-moving mountain stream provides a useful analogy
to the influences of mountains on the atmosphere. The surface of the water in
such a stream is often far from uniform. and clearly shows the influence of
submerged obstacles, such as large rocks. that act to perturb the water surface
both slightly ahead of and downstream from the obstacles. Mountains act in a
similar fashion to perturb the atmospheric flow. This occurs because a stable
atmospheric stratification creates buovancy forces that act to return vertically
displaced parcels to their equilibrium levels and because slight ascent often leads
to saturation of the atmosphere and cloud formation (Smith 1979).

Analyses from the output of medium-range numerical weather prediction
models and general circulation models in the 1970s and 1980s during the
northern hemisphere cold season indicate that the zonally averaged upper-
tropospheric flow was too strong in the midlatitudes after several days of
prediction time (Lilly 1972; Palmer et al. 1986; Kim er al. 2003). This systema-
tic error influenced the predicted values of sea-level pressure, low-level winds,
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Figure 10.1. Residual term (ms~'d™") from the zonal mean momentum
budget calculated using uninitialized global analyses from December 1982
to February 1983 and attributable to subgrid-scale motions. Note the vertical
coherence in the drag between 307 and 50° N and the occurrence of both low-
level and upper-level minima. From Palmer er a/. (1986).

geopotential heights, and the evolution of extratropical cyclones (Palmer et al.
1986). Since the model-produced zonally averaged wind speeds agreed in many
other respects with observations, this overprediction of the midlatitude westerly
subtropical jet suggested that an important physical process was not included
(Lilly 1972). Zonal mean momentum budget calculations from uninitialized
forecast model analyses also indicated that the residual terms, representing the
effects of subgrid-scale motions, produce a drag in midlatitudes during the cool
season (Fig. 10.1) further strengthening the argument that some subgrid-scale
process was not incorporated in the models (Palmer ef a/. 1986).

Further studies indicate that this cold season wind speed error is due to the
lack of sufficient drag from rugged mountain ranges. At low levels, mountains
can produce flow blocking under stable atmospheric stratifications, changing
the effective mountain height and influencing the stationary waves in the
atmosphere (Wallace er al. 1983). However, as described by Palmer er al.
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(1986), in stratified flow a drag force can be imposed on the atmosphere via
internal gravity waves. These waves have horizontal wavelengths of ~6 km for
flow over a hill of width 1 km and propagate vertically into the atmosphere.
Wave breaking occurs when the waves reach a critical level; therefore, these
internal gravity waves are able 10 create an upper-level drag on the atmo-
spheric flow (Lindzen 1981). If the model grid spacing is greater than 5-10 km,
then there can be a significant underestimation of the drag force exerted by
rugged mountain ranges since these waves and the terrain features that gen-
erate them are not resolved adequately by the model (Clark and Miller 1991).
This systematic model wind speed error is much smaller or negligible during
the warm season, when the atmospheric stratification and surface winds are
weaker. It also is negligible when the elevated terrain varies smoothly, such as
over plateaus, where there is little subgrid variation in terrain height.

10.2 Simple theory

The response of the atmosphere to changes in terrain, such as mountain ranges
and more isolated hills, is complicated because it depends upon the ever
evolving atmospheric stratification. One measure of atmospheric stability is
the Brunt-Viisild frequency N (s '), where

Y
M=
80z

(10.1)

g 1s the acceleration due to gravity, and # is the atmospheric potential tempera-
ture (K). This is the frequency at which a vertically displaced air parcel oscillates
within a statically stable environment (N > 0). Air easily flows over any obsta-
cles to the flow for unstable (N* < 0) or neutral (N* = 0) stratification. This is not
the case for moderately stable stratification when buoyancy forces are important
to the flow over the obstacles and internal gravity waves can be produced
(Carruthers and Hunt 1990). As the stratification increases even further, the
buoyancy forces are strong enough that vertical motion is suppressed below a
certain height and the air flows around the obstacles (Fig. 10.2). Although the
height and length of the hill influence the exact response (Carruthers and Hunt
1990), the atmospheric stratification plays the dominant role.

One way to determine whether or not the air flows over or around an
obstacle of height /2 is to examine the inverse Froude number (Fr). This number
is defined as

&

Fr= .
7 0

(10.2)
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Figure 10.2. Atmospheric flow patterns over a three- dimensional hill for:
(a) neutral stratification, (b) weak stratification, (¢) moderate stratification,
and (d) strong stratification. From Carruthers and Hunt (1990).

where Uis the wind speed of the incident flow (Gill 1982). When £7 > | the air
flows around the obstacle since the stratification is strong. In contrast, when
Fr< 1 the air flows over the obstacle. For values of Frr~1 the air generally
flows both around and over the obstacle. As seen in (10.2), for a fixed
stratification (N = constant) the value of Fr decreases directly in proportion
to increases in the incident wind speed. Thus, both stratification and the
incident wind speed are important to determining the influence of the obstacle
on the atmospheric flow. The height /1 of the obstacle also plays a role. as larger
heights increase the value of Fr, thereby increasing the likelihood that the flow
goes around the obstacle. The amount of drag produced by the obstacle on the
atmosphere changes if the flow goes over the obstacle, goes around the
obstacle. or if the obstacle generates internal gravity waves, or some combina-
tion of these flow responses (Fig. 10.3).

Another important parameter to consider when examining the atmospheric
response to obstacles is the Richardson number (Ri). the dimensionless ratio of
the buovant suppression of turbulence to the generation of turbulence by
vertical wind shear. It 1s defined as

(g/0) 000z N?

Ri=S P (10.3)
(QU/0z)" (QU/dz)"

where U(z) is the mean horizontal wind speed. When the Richardson number
falls below 0.25. the commonly accepted value of the critical Richardson
number. the air becomes unstable and turbulence is generated.
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Figure 10.3. Schematic of the normalized surface pressure drag as a function
of Fr for constant values of N and U that outlines the three [ow regimes
identified from the numerical simulations. The pressure drag is normalized by
the value expected by linear theory due to freely propagating gravity waves.
From Scinocca and McFarlane (2000).

The response of a stably stratified atmosphere to mountains can be investi-
gated analytically following Durran (1986, 1990). For stationary, two-dimensional
airflow over small-amplitude mountains the inviscid Boussinesq equations con-
tain the essential physics governing the flow. If these equations are linearized
about a horizontally uniform basic state with a mean wind U(z), the result is

v OV e PE (10.4)
ox iz T Ox

L‘(};\" c‘ﬁt‘)g% = b (10.5)

L% ~ N =0 (10.6)

%—gl:o (10.7)

where b= gf/6, and 7 is the Exner function, which is equal to (p/py) /. These
equations can be combined to form a single equation in the velocity compo-

nent v, such that

Fw . Fw o,
p ~ T
ox?  dz2

T Fw= 0, (IU.&
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in which

, N 14U
Ff=———— 10.9
U U dz* ( )
is the Scorer parameter.
If the terrain height A(x) is assumed to be a series of infinite periodic ridges,
an assumption which still retains most of the fundamental properties of small-
amplitude mountain waves, then we have

hi{x) = hycos(kx), (10.10)

where A 1s the terrain height amplitude and the wavenumber & defines the
separation distance of the mountain ridges. It is further assumed that the
values of N and U are constant with height and time. Since the terrain surface
is fixed and impenetrable, the velocity normal to the topography must vanish.
This lower boundary condition requires that

. Oh _ Oh

w(x,z=0)=(U+u) v LE = —Uhpk sin(kx). (10.11)

Thus, solutions to (10.8) may be written in the form
w(x.z) = wi(z) cos(kx) +a(z) sin(kx). (10.12)

When this solution is substituted into (10.8), then an equation governing the
vertical structure of the perturbation vertical velocity is found, such that both
Wy and o satisfy

azli'{'
Jz2

+ (F =)y =0, i=12. (10.13)

Since both N and U are assumed to be constant, /> — k% =" is also a constant
and the solutions to (10.13) are

PIERI - S .
1m3={$‘ Bie k> 1 (10.14)

Cicos(mz) + D;sin(mz) k<,

where ,u: = - (Durran 1986). The coefficients 4;, B;, C;, and D; are deter-
mined by the boundary conditions at the surface and as z approaches infinity.
Since the wave amplitude cannot grow exponentially without bound, it is
required that 4;=0. The lower boundary condition (10.11) then defines
By =0 and By = —Uhyk, yielding stationary waves that decrease exponentially
with height for & > /. For the other case when k </, then trigonometric iden-
tities can be used to rewrite the solution for w as
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w(x,z) = Eysin(kx + mz) + Eysin(kx — mz) + Es cos(kx + mz)
+ Eqcos(kx — mz), (10.15)

where 7 > 0 and & > 0. The lower boundary condition leads to E; + E, = —Uhgk
and E:; - E4 =0.

As discussed by Durran (1986). the terms in (10.15) with (kx-+mz)
correspond to waves in which the lines of constant phase tilt upsiream
(kx +mz = constant). These waves transport energy upward and momentum
downward, which is the desired behavior since the mountain acts as an energy
source and the waves should thus transport energy away from the mountain.
Note that in this case the horizontal wavenumber & is generally much smaller
than the vertical wavenumber m, vielding m= N/ U from (10.9). In contrast,
the terms with (kx — mz) transport energy downward and towards the moun-
tain — a situation that makes no physical sense. Thus, the upper boundary
condition requires that £; = — Uk, and that E; = Ey= E; = 0. Durran (1986,
1990) provides further explanation for this choice of upper boundary condi-
tion and why it is the correct one.

Finally, the perturbation vertical velocity field for waves forced by a sinu-
soidal terrain field defined by (10.10) is given as

L —Uhgke™# sin{kx) k>1

wix,2) = { — Uhgk sin(kx -+ mz) k<.

These two wave structures are depicted in Fig. 10.4, where the waves with k >/

are evanescent waves that decay exponentially with height and the waves with

k <l are waves that propagate vertically without loss of amplitude. If ¢ is

defined as the angle between the vertical and the slanting parcel trajectories for

the vertically propagating waves, then Durran (1986) shows that this angle can
be determined from

(10.16)

Uk
as long as Uk < N. For Uk > N the waves decay since there is no way for
buoyancy forces to support the oscillation.

For more realistic terrain shapes, the terrain profiles are constructed from
periodic functions using Fourler transforms (see Durran 1990). Results show
that the perturbation vertical velocity over an isolated bell-shaped ridge
behaves very similarly to the vertical velocity over the infinite series of sinu-
soidal ridges. If the mountain quarter width is specified by L, then for a narrow
mountain with N < U/L the mountain primarily forces evanescent waves. In
contrast, for a wide mountain with N> U/L the mountain primarily forces
waves that propagate vertically and their lines of constant phase tilt upstream.

cos(d) = (10.17)
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Figure 10.4. Two-dimensional streamlines over an infinite serics of sinusoidal
ridges for: (a) evanescent waves and (b) vertically propagating gravity waves.
The dashed line in (b) indicates the vertical upstream ftilt of the lines of
constant phase. The airflow is from left to right. From Durran (1990).

When Uand N vary in the vertical direction. another type of mountain wave
the trapped lee wave — can occur (Fig. 10.5). In this case the wave activity is
confined to the lower troposphere on the lee side of the mountain (Scorer 1949:
Durran 1986). If one assumes two vertical atmospheric layers with different
values of NV in each layer. a necessary condition for the existence of trapped
waves can be determined that depends upon the value of the Scorer parameter
in each layer and the depth of the lower layer (Scorer 1949). These trapped
waves propagate vertically in the lower layer and then decay exponentially
with height in the upper layer. The wave energy is repeatedly reflected from the
flat ground downstream of the mountain and from the upper atmospheric
layer, producing waves with no vertical tilt (Durran 1990). Thus, trapped lee
waves are referred (o as resonant waves when these conditions are met.

Internal gravity waves are important to the large-scale atmosphere because
they can produce drag. If the variables in the horizontal equation of motion
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Figure 10.5. Two-dimensional streamlines in steady airflow over a single

mountain ridge when the Scorer parameter varies in the vertical allowing

trapped lee waves. The airflow is from left to right. From Durran (1990).

written in - coordinates are separated into mean (bar) and perturbation
(prime) quantities, then it can be shown that

ﬁm—”; NVup~fhkx Vi = —ﬁ (W' W)+ - -, (10.18)
dt dz

where the [irst term on the right-hand side is the vertical eddy stress conver-
gence term due to gravity waves (Lilly 1972). In a stably stratified atmosphere,
gravily waves are able to transport momentum substantial distances between
their sources and sinks without affecting the intervening vertical lavers
(Bretherton 1969). In essence, m is non-zero when small-amplitude waves
are present, but its vertical derivative is zero (Eliassen and Palm 1961). This
also implies that the momentum flux for vertically propagating waves at any
vertical level is equal to their momentum flux. or stress, at the ground surface
in the absence of dissipation (Eliassen and Palm 1961). Drag is produced when
the momentum f{lux changes with height, which occurs during wave breaking
and for trapped waves (Durran 1990).

Wave breaking occurs when the gravity waves grow to large amplitude, in part
due to the decrease of density with height, and overturn. This occurs because as
the amplitude of the waves increases, the influence of the wave circulations on
the local environment may lead to the local Richardson number (R/) dropping
below 1ts critical value of 0.25 (Lindzen 1981). Turbulence is then generated,
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Figure 10.6. Mean observed profile of momentum flux obtained by averaging
values obtained from three different analysis methods (solid black line) and
from theory (dashed linc). Note how the momentum flux is approximately
constant with height below the turbulent layer, and then decreases to zero
within the turbulent layer. From Lilly and Kennedy (1973).

producing an exchange of momentum between the waves and the environment
and hence drag. Analyses of aircraft observations of mountain wave momen-
tum flux indicate that the momentum flux is fairly constant below the turbu-
lent layer (Fig. 10.6) in agreement with theory (Lilly and Kennedy 1973).
Trapped lee waves can also produce momentum flux that varies with height,
and produce drag as seen in both model simulations (Durran 1990) and obser-
vations (Georgelin and Lott 2001). Although the horizontal average of the
momentum flux over one phase of a resonant wave is zero, it is the disturbance
nearest the mountain that generates the vertically varying non-zero momentum
flux (Durran 1990). Although likely not as important as wave breaking, the drag
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Figure 10.7. Vertical profiles of Reynolds stress for various model grid
spacings over the Alps region in northern Italy. Numbers 80, 40, 20, 10, and 3
denote the model grid spacing used, while the letter E refers to a model
simulation with envelope orography. The magnitude of the Reynolds stress
is on the left, while the direction of the stress is on the right. Tt is ¢clear that the
Reynolds stress at 80 km grid spacing is an order of magnitude smaller above
3 km than the stress determined using 5km grid spacing, illustrating the need
for orographic drag parameterizations. From Clark and Miller (1991).

due to trapped lee waves is a potentially important source of orographic wave
drag, especially for models with smaller grid spacing.

The dependence of this vertical momentum flux on model grd spacing is
examined by Clark and Miller (1991) for a simulation of flow over the Alps. By
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varying the model grid spacing from 80 km to 5 km they show that the vertical
momentum {lux changes substantially as the grid spacing decreases and con-
clude that the orographic drag is not fully accounted for in models until the
grid spacing falls below 10km or so (Fig. 10.7). Thus, for many modeling
Systems it 1s necessary Lo parameterize this orographic drag in order to account
for its influence on the atmospheric flow.

Orographic drag parameterizations often separate out the effects of low-
level flow blocking and gravity wave drag. The total drag due to orography is
simply the sum of the drag produced by gravity waves and low-level flow
blocking. Whether or not gravity waves or blocking is occurring at a given grid
point depends upon the value of the inverse Froude number owing to its ability
to describe the response of the atmosphere to an obstacle. An overview of
gravity wave drag is conducted first, followed by an overview of the drag from
low-level blocking.

10.3 Gravity wave drag parameterizations

There are two parts to most gravity wave drag parameterizations: calculation
of the mountain wave stress. or pressure drag, followed by the vertical dis-
tribution of the wave stress. For the simplest case of a series of infinite periodic
ridges, one can use the perturbation vertical velocity w from (10.16). solve for
the perturbation horizontal velocity u using the two-dimensional continuity
equation (10.7). and calculate the wave momentum flux or Reynolds stress at
the surface from 7 = pmr, vielding

l - .
Tye = — 5 kpUNhg. (10.19)

When used in numerical models the stress is often defined similarly as

Tofe = ~~B,{)n L-U.\'{Jf?:‘ [1020}

where U 1s the low-level wind speed. N, is the low-level Brunt-Viisild fre-
quency, py is the surface density, /” is the variance of the subgrid scale orogra-
phy. and B is a tunable constant that depends upon the characteristics of the
orography (Phillips 1984; Palmer ez al. 1986). For example, Boer er al. (1984)
define Bx 1/dy. where o is the typical separation distance between the impor-
tant topographic features in the grid cell. Kim and Arakawa (1995) show that
this type of approach to defining the surface stress due to the mountain waves is
fairly common in gravity wave drag parameterizations (e.g.. Chouinard et al.
1986: McFarlane 1987: Iwasaki er «/. 1989).
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A slightly different formula is developed by Pierrchumbert (1986) in which

T = _pth (L) (10.21)

No \F2+1

Assuming that B is constant. then when Fr>3-1 and air flows around the
obstacle the surface stress is at its maximum. When Fr ~ [ and air flows both
around and over the obstacle. the surface stress 1s roughly half its potential
maximum value. And when Fr < 0 and air easily flows over the obstacle there
is little surface stress. This type of surface stress formulation is used, for
example, bv Stern er al. (1987), Alpert er al. (1988), Kim and Arakawa
(1995). Gregory et al. (1997), and Kim and Doyle (2005).

However, the value of 81in (10.20) and (10.21) is not a constant and can vary
from gridpoint to gridpoint. The expression for B often is a complicated func-
tion of both the subgrid orography and the surface wind direction. Forexample,
Lott and Miller (1997) use estimates of the height variation in the along-ridge and
cross-ridge directions to specily the value of B. Estimates of the sharpness,
slope, width. and profile of the orography based upon the surface wind direction
are used in Kim and Dovle (2003) to calculate B. The formulation in Kim and
Arakawa (1995) is based upon results from over 100 two-dimensional moun-
tain wave simulations with various shapes and sizes of mountain. The need for
all of these simulations illustrates the sensitivity of the gravity wave drag
parameterizations to the subgrid orography and the surface wind direction.

Once the surface stress is determined. the vertical profile of wave stress can
be calculated. This is accomplished by estimating the influence of the oro-
graphic gravity waves on the local static stability and vertical wind shear and
then determining a minimum Richardson number that represents the smallest
value the Richardson number can obtain under the influence of the gravity
waves. When this minimum Richardson number falls below the critical value
for the onset of turbulence, then wave breaking occurs. This minimum
Richardson number is defined as
1 — (N&h/U)

1+ RiVA(NSh/U)

Riyin = Ri (10.22)
where &/ is the vertical displacement of an isentropic surface due to the gravity
waves, N is the local value of the Brunt-Viisild frequency, and U is the local
wind speed in the direction of the surface wind direction (Palmer ¢t «/. 1986).

Beginning at the surface. the calculations to determine the gravity wave drag
are made by moving upward in the grid cell. The required values of Ri, N, and
U are determined directly from the model data for any given vertical level. The
value of &4 is determined by assuming that the momentum flux at any level
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in the atmosphere equals the surface momentum flux unless wave breaking
occurs and some of the momentum is transferred to the environment (Eliassen
and Palm 1961). Thus, one solves for 6/ using (10.20) knowing the surface
value of the momentum flux (or the momentum flux at the next lowest model
level) and replacing the surface values of p, N, and U with their values at the
given model level. This yields

. 1/2
o= | —— ) 2
5h; ( Bp,-U,-;\-’,-) _ (10.23)

where 7;is the momentum flux reaching to vertical level / and the value of U, is the
component of the wind parallel to the surface wind (Kim and Arakawa 1995).
Once the value of 6/ 18 determined. the minimum Richardson number is calcu-
lated from (10.22). If Ri,,;, > 0.23, the critical value for the onset of turbulence,
then wave breaking does not occur, the vertical wave momentum flux is
unchanged, and the next highest vertical level is evaluated. When Ri,,;, < 0.25
at a given vertical level in the grid cell, wave breaking occurs and some of the
wave momentum flux is transferred to the environment, producing drag.

The most common approach to specifying the amount of momentum flux
transferred to the environment is based upon the saturation hypothesis of
Lindzen (1981), in which dissipation processes are assumed to limit the wave
amplitudes and to produce drag. When wave breaking occurs, one can calcu-
late the value of 8/ needed to reset the value of Ri,,; 10 0.251n (10.22) and thus
cause the turbulence to cease. The momentum flux that remains after wave
breaking is determined using this modified value of §k in (10.20). The differ-
ence between the original surface momentum flux and the momentum flux left
after wave breaking represents the amount of momentum transferred to the
atmosphere at the model level height. Several caveats and practical points
regarding these calculations are discussed by Palmer e al. (1986).

A comparison of results from a gravity wave drag parameterization that is
based upon the saturation hypothesis with results from two-dimensional
mountain wave simulations suggests that the magnitude of the parameterized
dragis underestimated in low-level downstream regions with wave breaking or
lee wave trapping (Kim and Arakawa 1995). Further exploration of this
problem by Kim and Arakawa (1993) suggests that the vertical gradient of
the Scorer parameter is a more useful approach (o estimating the change of
wave momentum flux with height at low levels. Thus, the change in wave
momentum flux is defined using

i :min([’; L .1). (10.24)
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where C;=1 (a tunable constant), / defines the vertical model layer and
increases upwards, and [ Is again the Scorer parameter (Kim and Arakawa
1995; Kim and Doyle 2005). Kim and Arakawa (1995) use (10.24) to determine
the change in wave momentum f{lux below 10km and use the saturation
hypothesis (10.22) above 10 km.

The effects of low-level wave breaking within the first vertical wavelength
above the surface also can be approximated by examining the results from fully
three-dimensional simulations of breaking waves. Results indicate that the sur-
face stress is amplified by up to three times above expectations from linear theory
for flow over obstacles, and this stress amplification depends upon the value of Fr
(see Fig. 10.3). Thus, Scinocca and McFarlane (2000) develop a simple empirical
relationship to increase the surface stress for the appropriate range of Fr values
for which low-level breaking is likely. This stress decreases linearly between the
surface and the height of wave breaking. Kim and Doyle (2005) include an
enhancement factor in their calculation of low-level drag to account for low-
level wave breaking and wave trapping, which is also tied to the value of Fr.

Most gravity wave drag parameterizations assume only one vertically propa-
gating gravity wave is generated by the subgrid orographic mountains. When
the model winds turn with height and become normal to the surface wind
direction (i.e., the two-dimensional wave orientation) a critical level is created
and all of the remaining wave momentum is transferred to the atmosphere at
this one vertical level. This can result in excessive momentum deposition at these
critical levels (Scinocca and McFarlane 2000). To help alleviate this problem,
Scinocca and McFarlane (2000) assume that there exist two vertically propagat-
ing gravity waves within each grid cell with different orientations, while Gregory
et al. (1997) assume a finite spectrum of gravity waves. Most models that focus
upon the evolution of the atmosphere in the troposphere assume a single gravity
wave, whereas models that also need to predict the evolution of the stratosphere
tend to allow for a spectrum of waves (Kim ez a/. 2003).

10.4 Low-level blocking drag parameterizations

The blocking of low-level flow due to subgrid-scale mountains also can pro-
duce an extra source of drag for the atmosphere. Initial attempts to account for
this blocking effect focused upon modifying the model-resolved orography.
For example, the original model terrain heights (i.e., the average terrain height
within a model grid cell) are increased in proportion to the standard deviation
of the subgrid terrain heights when applying envelope orography (Wallace
et al. 1983). A similar approach is used by Mesinger ez al. (1988) in a study of
lee cyclogenesis in which the model terrain heights are defined by the tallest
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peaks and by Tibaldi (1986) in studying the maintenance of quasi-stationary
waves. However, while these approaches increase the drag. since the terrain is
taller and interacts with a deeper layer of the atmosphere. they also appear to
have undesirable consequences. Envelope orography makes the assimilation
of low-level observations more difficult, while also leading to excessive pre-
cipitation over the enhanced orography (Lott and Miller 1997).

The problems with envelope orography and other modifications to the ori-
ginal average model terrain field led to the development of low-level blocking
parameterizations. These approaches use the value of the inverse Froude num-
ber to estimate the depth of the flow that is blocked by the subgrid mountains.
Scale analysis and results from analytic studies of [low over objects of various
shapes allow for an estimation of the surface form drag due to subgrid oro-
graphic features. A typical form of the surfuace stress due to low-level blocking is

Tefer — — % 0 (.‘r'!?,:‘f,', {,k}! (.-'n l ( 1025)
where L7 is the area of the grid cell. A is an estimate of the number of ellipses
needed to represent the unresolved topographic features, C is a bulk drag
coellficient. /1, is the height of the blocked layer, and /, 1s the width of the blocked
layer (Scinocca and McFarlane 2000). An alternative formulation to (10.25) is
found in Kim and Doyle (2005) that includes a unique set of parameters that
take into consideration the details of the orographic configurations. The height
of the blocked laver is related 1o the inverse Froude number, such that

L{;.. -
hy =— Fr— fFr.. (10.26)
Ny~ )
where Fr, is the critical inverse Froude number that specifies when low-level wave
breaking occurs and has a value of ~1 (Scinocca and McFarlane 2000). Over the
depth of the blocked flow region the stress is typically held constant or decreased
linearly with height (Lott and Miller 1997; Scinocca and McFarlane 2000).

10.5 Discussion

Most orographic drag parameterizations used within operational forecast
models today are based upon a combination of low-level blocking and gravity
wave drag diagnostic calculations. We have seen that these calculations
depend upon the values of N. U, and Fr, and the variation of the orography
within the model grid cell. The amount of drag imparted to the atmosphere also
depends upon the assumptions used for determining where and when wave
breaking occurs. While most of the early orographic drag parameterizations
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were evaluated only by their ability o improve the model forecasts, most studies
today also try to evaluate the parameterizations off-line in comparisons with
observations from a handful of field campaigns and wave-resolving model
simulations (Kim er /. 2003). For example. the orographic drag parameteriza-
tion of Kim and Doyle (2003) is compared with simulations that explicitly
resolve the momentum flux over complex orographv. Results suggest good
agreement between the parameterization and the explicit momentum flux cal-
culations (Fig. 10.8). However. the objective evaluation of orographic drag
parameterizations remains difficult and many of the parameters used within
these schemes are not constrained and so must be selected carefully.

The need for gravity wave drag also is not limited to flow over mountain
ranges. Deep convection also produces gravity waves that propagate vertically
and may need to be parameterized (Lindzen 1984: Kershaw 1995; Gregory
et al. 1997; Bosseut er «/. 1998: Chun and Baik 1998, 2002). It appears that
organized convective regions, such as mesoscale convective systems, may be
important generators of gravity waves that influence atmospheric circulations
in the Tropics (Kim er al. 2003). In particular. Alexander and Holton (1997)
hypothesize that convectively generated gravity waves are a possible mechan-
ism for the quasi-biennial oscillation. Unfortunately, developing parameter-
izations for convectively generated gravity waves is even more challenging
than for the orographically generated gravity waves, in parl because the
generated waves are largely non-stationary and there are a number of mechan-
1sms that can account for the wave generation.

One of the challenges to orographic drag parameterizations is the ever
changing grid spacing of the models. For large horizontal grid spacings the
gravity waves forced by convection or terrain likely remain contained within
the model! grid cell to a first approximation. However. as the grid spacing is
reduced it is possible and perhaps even likely that the gravity waves actually
propagate out of the model vertical grid column to influence neighboring grid
points. Methods to approximate this wave propagation into neighboring grid
cells have been developed, but are presently too computationally expensive for
widespread use (Kim and Doyle 2003). The vertical grid spacing is also likely to
be an important consideration as it influences the predicted values of U/ and N.

The length of the model simulation also is an important consideration when
deciding if an orographic drag parameterization is needed. Certaintly for
model forecasts bevond a few days the potential influences of orographic
drag are large enough to warrant inclusion of the parameterization.
However, the strong mixing and drag produced by wave breaking associated
with downslope wind storms can be substantial even for shorter time periods.
Thus, these types of parameterizations may need to be included even for
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Figure 10.8. Momentum flux from an orographic drag parameterization
compared with the flux calculated from an explicit 2km grid spacing
simulation of the gravity wave event produced by flow over mountains. The
sign of the momentum flux is reversed. Results from three different cases
are shown. In (a) the momentum flux does not reach 0 below 24km. In
(b) the momentum flux goes to zero between § and 18 km, whereas in (c) the
momentum flux goes to zero below 14km. From Kim and Doyle (2005).

short-range forecasts. The point at which the horizontal grid spacing begins to
fully resolve the gravity waves, such that no orographic drag parameterization
is needed, also remains an open question (see Kim er al. 2003). The effects of
moisture on the development of trapped mountain waves also may be impor-
tant, as the wave response can be amplified or damped due to the presence of
moisture (Durran and Klemp 1982; Kim and Doyle 2005).
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Figure 10.9. Tsolines of sign(Ri#) |Ri!'” at the 3h time from idealized simula-
tions of the 11 January 1972 Boulder, Colorado, downslope windstorm using
4 different non-hydrostatic models. All simulations are two-dimensional and
use an idealized mountain profile. While the general regions of wave breaking
are very similar, the details are very different. From Doyle et al. (2000).

Explicit two-dimensional simulations of gravity wave breaking over an
analytic orographic profile from 11 different numerical models show many
similarities (Doyle ez al. 2000). All the runs produce wave breaking in approxi-
mately the same location in the stratosphere and produce downslope winds in
the lee of the mountain. However, there also are notable differences in the
details of the strength of the downslope winds, the depth of the wave breaking
region, and the detailed structures within the breaking region (Fig. 10.9). So
while these results are encouraging in that all the models produce wave break-
ing, they also raise some concerns about the ability of explicit gravity wave
simulations to produce accurate reproductions of all aspects of the wave
breaking. Since wave breaking is a very non-linear process (Peltier and Clark
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1979) this 1s probably not a surprising result. The difficulty becomes trying
to parameterize a highly non-linear process based upon the resolved model
variables. This process is very challenging. vet the developers of orographic
drag parameterizations strive (o provide realistic estimates of drag for use in a
variety of numericul weather prediction models,

fad

L

6.
. Using the results of Questions 3-6, discuss the sensitivities of the parameterization

10.6 Questions

Using the sounding data listed below, plot the sounding on a thermodynamic
diagram, and calculate the values of N using (10.1) for each height level.

Assume that a mountain exists near this sounding location with a ridge orientation
of 180" Vary the mountain height between 100 and 500 m in 30 m increments, and
calculate the inverse Froude number using (10.2). What tvpe of atmospheric

response would be expected [rom this obstacle to the flow?

. Given a surface stress of —1.0kegm™ s~ and B=0.2, calculate é» and Ri,,;, for

each height level using (10.22) and (10.23). Explain the mechanies of this calculation
and anyv assumptions made. Would wave breaking occur?

[ncrease the values of Vin the column by 10%. How does this change the expecta-
tic

s for wave breaking?

. Increase the values of wind speed normal to the ridge orientation by 10%. How

does this change the expectations for wave breaking?

Decrease the value of B {rom 0.2 to 0.1. Describe the changes to the values of Ri,,;,.
scheme to the model forecasts of the environment that the schemes use to predict
orographically produced gravity waves.

Sounding data for use in Questions 1-7.

P (hPa) H(m) T(C) TD (°C) U(ms Y

861 1473 -2.90 —6.40 2.00
850 1573 0.00 —-5.00 8.00
813 1930 0.20 —13.80 6.00
762 2438 —1.80 —10.73 0.70
726 2831 —1.90 —8.90 3.00
700 3120 4.30 —11.30 7.00
653 3638 —6.20 —15.94 8.00
604 4267 —95.90 ~-21.35 14.00
500 3710 —19.10 -39.10 16.00
400 7320 —32.30 —48.30 20.00
300 9300 —45.30 —55.30 25.00
250 10500 —52.50 -61.30 41.00
200 11920 —55.30 —71.30 25.00
150 13750 —36.70 —&0.70 20.00
100 16 270 —64.90 —87.90 15.00




