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Thoughts on the future

11.1 Introduction

Throughout the previous chapters we have examined a number of the most
commonly used tvpes of parameterization schemes within numerical weather
prediction models. While individual parameterization schemes are constantly
undergoing revision and new schemes appear in both the literature and opera-
tional models routinely. the underlying need for the parameterization of
fundamental atmospheric processes has not changed. Indeed, the number of
processes that are being parameterized has increased over the past 20 years to
allow for more realism in both forecasts and climate simulations. These addi-
tional parameterizations may not be crucial to the model forecasts at all times
and places, but they can make a significant difference regarding a particular
event of importance to a specific user or community.

This evolution of parameterization highlights the fact that numerical models
are becoming more capable (see Roebber ¢r «f. 2004). Models now can repro-
duce many of the phenomena that are observed in the atmosphere. As simple
examples, moderate- and high-resolution models of today can reproduce meso-
scale convective systems with their leading line of deep convection and trailing
stratiform precipitation region as well as sea breezes and mountain-valley flows,
while coupled ocean-atmosphere models can reproduce El Nifio Southern
Oscillation (ENSO) events. These phenomena could not be reproduced by any
of the operational models (or even many research models) in use back in the
1970s, owing in part to their large grid spacing and in part to the parameteriza-
tion schemes in use. This increased model capability often leads to higher
expectations as well as higher perceived confidence in the forecasts. It can be
very difficult for a human forecaster to challenge the prediction from a numer-
ical model forecast at 1 km grid spacing that indicates the development of a
severe thunderstorm. or from a seasonal climate model that predicts an ENSO
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event. These model forecasts often provide details that cannot be observed,
while the structures and behaviors produced by the model appear very realistic.

Yetitis hoped that some degree of uncertainty or doubt has been created as
the various parameterization schemes have been examined and their sensitiv-
ities explored. Parameterization schemes generally develop from a reasonable
theoretical foundation, but require a number of simplifying assumptions and
are tested using a limited data set over a specific range of environmental
conditions. However, when incorporated into numerical models, these
schemes are then used to make predictions over the entire globe and in
environments for which they likely have never been tested fully. In addition,
the behavior of an individual parameterization often depends upon the beha-
vior of other parameterization schemes and interactions between schemes
often occur. For example, planetary boundary layer schemes depend upon
the behavior of the soil-vegetation-atmosphere transfer scheme that predicts
ground temperature and soil moisture, yet the boundary layer scheme also
influences the net radiation reaching the surface through the vertical mixing of
moisture. Empirical tuning also comes into play as model developers and some
users attempt to optimize model skill (however defined) for particular pro-
blems or scenarios. This empirical tuning often does not occur through a
systematic approach and may instead be guided by case studies of important
events or model intercomparison tests with a small sample size. The truly
remarkable aspect of all this is that the resulting numerical predictions have
value! And this value appears to be increasing over time, in part because the
model parameterization schemes are becoming more and more accurate and
realistic. This trend in the ever increasing realism in parameterization schemes
1s expected to continue. But this situation also should cause us to pause and
think about how best to use these valuable, yet flawed, tools that we create.

It is important to recognize that it is impossible to test a parameterization
scheme for all atmospheric conditions that may occur. The observational data
do not exist for such a test, and the time needed to conduct such tests would be
prohibitive. This is not to suggest that parameterization schemes should not be
tested on large data sets. Indeed, many parameterization schemes are already
tested on fairly large data sets and this testing is important to the improvement
and validation of schemes. However, we need to recognize and appreciate that
a truly comprehensive test of a parameterization scheme is impossible. And
even if a comprehensive test indicated a weakness of a scheme under specific
conditions, this does not imply that the scheme should be discarded. It is just
that the scheme has limitations, which is true for all parameterization schemes.
Numerical models are imperfect, so the key to success is how we deal with these
imperfections.
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We move at this point from the realm of what is known into a realm that
mixes knowledge with conjecture and opinion. This is perhaps a bit unusual
for a meteorological textbook, but it seems appropriate to discuss what the
future may hold to stimulate discussions and debate in this important enter-
prise called numerical weather prediction. Topics briefly touched upon are
ensemble predictions, ensembles and high-resolution single forecasts, statisti-
cal postprocessing, and the road forward.

11.2 Ensemble predictions

Ever since the pioneering study of Lorenz (1963), it has been recognized that
small errors can grow rapidly in non-linear models. However, even if the model
is perfect, there is a finite time limit to the predictability of the atmosphere,
since it is impossible to observe the atmosphere perfectly due to both sampling
and instrument errors. This predictability time limit becomes shorter as the
scales of interest become smaller (Lorenz 1969). Model simulations starting
from ever so slightly different initial conditions diverge and eventually have
little relationship to one another (Fig. 11.1). Since the true atmospheric state at
any point in time can only be known approximately, the atmosphere predic-
tion problem needs to be formulated in terms of the time evolution of a
probability distribution function (PDF) for the atmosphere. This realization
that the atmosphere is chaotic and has this sensitive dependence upon initial
conditions led to the development of ensemble forecasting systems that expli-
citly attempt to predict the evolution of the atmospheric PDF (see the histor-
ical review by Lewis 2005). Since their first operational use in the early 1990s,
ensembles have become a critical component of both operational numerical
weather prediction and climate studies, and remain an important research topic.
Ensembles are now used for climate, seasonal, medium-range, and short-range
forecasting. As the models used within ensemble forecasting systems improve,
the ensembles improve as well. Thus, model and ensemble forecast improve-
ments go hand-in-hand.

Ensembles are simply groups of forecasts that are valid over the identical
time period. Typically, each forecast member of the ensemble differs in its
initial conditions in order to provide an initial sample of the atmospheric PDF.
Differences in model characteristics may also be included as part of the
ensemble to account for model error. A numerical weather prediction model
is used to provide a forecast from each of these different initial conditions,
and the properties of the atmospheric PDF are assumed to be determined by
the statistics calculated from the ensemble members at any selected forecast
time (Epstein 1969; Leith 1974; Molteni et al. 1996). The ensemble statistics
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Figure 11.1. Depiction of the Lorenz (1963) attractor (dots), with trajectories
a and b indicated that start from an initial small difference and evolve into a
large difference at their end points A and B.

approximate the true atmospheric PDF closely if the initial perturbations
accurately represent the PDF of analysis errors and if the numerical model
provides a very good approximation of the atmosphere. Thus, instead of a
single (deterministic) forecast that only provides one picture of the evolution
of the atmosphere. an ensemble of forecasts is created and the forecast is now
inherently probabilistic in nature. Murphy and Winkler (1979) strongly argue
that forecasts cannot be used to their best advantage unless the forecast
uncertainty is quantified and expressed in a useful manner to the end users.
Ensemble forecasting systems are one way to express [orecast uncertainty
(Fig. 11.2).

Ensembles initially consisted of the same model with the same parameter-
ization schemes, but using different initial conditions for each ensemble mem-
ber. A number of different techniques have been developed to perturb the
model initial conditions around a control. or best estimate. analysis of the
atmospheric state in order to sample the analysis error. One Monte Carlo
approach mimics the differences between the global analyses of different
operational centers. which is an estimate of analysis error. and so draws the
different itial conditions from this specified distribution (Errico and
Baumbhefner 1987: Mullen and Baumhefner 1994). However, it takes a very
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Figure 11.2. Spaghetti diagram of 3820m. 500hPa geopotential height
isolines from the NCEP short-range ensemble forecasting svstem started at
0900 UTC 22 August 2005, Geopotential height 1solines valid at the 39h
forecast time. or 0000 UTC 24 August 20035. Notice the variability over central
North America, with some members indicating that a ridge or anticyclone will
develop and others indicating zonal flow across the United States. Courtesy of
Dr. Jun Du of the National Centers for Environmental Prediction.

large number of ensemble members to randomly sample the analysis error well
and it is prohibitively expensive at this time to produce forecasts from hun-
dreds of ensemble members. Thus. several initial condition perturbation tech-
niques sample the analysis uncertainty space more strategically. Both singular
vectors (Buizza and Palmer 1995; Molteni e al. 1996; Buizza 1997) and the
breeding of growing modes (Toth and Kalnay 1993, 1997) select perturbations
Lo the control analysis that are the most unstable and grow the fastest. It is
hoped that these fastest growing perturbations lead to a reasonable sampling
of the true atmospheric PDF with fewer ensemble members, since they should
dominate the ensemble variability. Results further indicate that these two
perturbation techniques, initially developed for medium-range ensemble sys-
tems, focus upon perturbations to synoptic-scale weather systems over the
midlatitudes that are associated with baroclinic instability (Toth and Kalnay
1997). This temporal and spatial scale is well suited for numerical weather
prediction, since baroclinic instability is inherent within the equations of
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motion. Yet another perturbation approach uses perturbed observations
in data assimilation systems to produce a set of representative analysis
errors (Houtekamer ez al. 1996; Houtekamer and Lefaivre 1997), instead of
focusing upon growing modes that differ systematically from analysis errors
(Houtekamer 1995). Regardless of the perturbation method, after 5 days of
forecast time, it is difficult if not impossible to determine which perturbations
originated from which technique.

As the spatial and temporal scales get smaller, more instabilities and physi-
cal processes are known to play a role in the evolution of important atmo-
spheric features, at least on an intermittent basis. This also suggests that
forecasts of these smaller-scale features will be useful over commensurately
shorter times. This situation highlights the need for improved and increased
observations and analysis techniques (see Daley 1991 for a summary of many
data assimilation techniques) in order to provide an accurate depiction of the
initial atmospheric state for models to use. New sensing capabilities, such as in
situ observations from commercial aircraflt and remote sensing observations
from satellite and radars, have helped to provide greater information to use
in specifying the atmospheric state. But the information available on meso-
scale and cloud-scale atmospheric features is still woefully inadequate.
Sophisticated data assimilation techniques, such as three- and four-
dimensional variational assimilation (e.g., Derber 1989; Zupanski and
Mesinger 1995; Gauthier ef al. 1999; Lorenc er al. 2000; Rabier et al. 2000;
Barker et al. 2004; Zupanski et al. 2005) and the ensemble Kalman filter
(Evensen 1994, 1997; Mitchell and Houtekamer 2000; Houtekamer and
Mitchell 2001; Snyder and Zhang 2003; Dowell er a/. 2004) help to make the
most use of the available observations. Yet it is clear that many uncertainties
remain in the initial conditions provided to models.

The uncertainties present in specifying the atmospheric state at any given
time also influence the perturbation strategies designed for creating the
ensemble members. For example, perturbation techniques designed for the
medium-range forecast problem may not be well suited to the short-range
forecast problem. While baroclinic instability is still important at short
ranges, many initial state uncertainties and short-range forecast concerns
have little to do with synoptic-scale features. The use of optimization periods
of 12h to 2 days for error growth may define the perturbation types that are
generated and these perturbations may not be especially meaningful for the
short range. Alternative approaches to generating initial condition perturba-
tions that use input from human forecasters appear worthy of further
exploration for predicting unlikely events (e.g., Xu ef al. 2001; Homar et al.
2006). Yet it may be that combining various approaches, such as Monte
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Carlo and the breeding of growing models, yields the best results. More research
is needed on how to generate perturbations for short-range ensembles. The same
can probably be said of ensembles used for seasonal and climate simulations
and forecasts.

We have seen in earlier chapters that parameterization schemes play a large
role in forecasts of sensible weather - low-level temperatures, dewpoints,
winds, and rainfall about which the public is most concerned. And, therefore,
one would think that parameterization schemes may contribute to forecast
sensitivities and to important forecast errors (Fig. 11.3). This realization that
model imperfections may contribute substantially to forecast error has led to
the inclusion of different models or different physical process parameteriza-
tion schemes or stochastic errors within ensemble forecast systems for both the
medium and short range (Houtekamer er al. 1996; Atger 1999; Buizza et al.
1999; Harrison er al. 1999; Stensrud ef al. 1999, 2000; Fritsch et al. 2000,
Evans er al. 2000: Ziehmann 2000; Wandishin et a/. 2001; Hou ef al. 2001;
Stensrud and Weiss 2002). Results from these studies clearly indicate that
ensembles containing different models or different parameterization schemes
are more skillful than ensembles that do not contain some aspect of model
uncertainty. It is anticipated that as we explore the optimum balance of ensem-
ble member grid spacing and the number of ensemble members, the probabilistic
forecasts from multimodel ensemble systems will only further improve.

The value of multimodel ensembles also is seen in seasonal to interannual
climate prediction. Nine-member ensembles are created from each of seven
different coupled ocean—atmosphere models that use nearly the same control
initial conditions and the results from all nine ensembles pooled into one large
multimodel ensemble as part of the Development of a European Multimodel
Ensemble system for seasonal-to-inTERannual prediction (DEMETER,
Palmer er al. 2004) project. Results indicate that coupled ocean-atmosphere
multimodel ensembles are more reliable, have better resolution, and have con-
sistently better performance than single-model ensembles (Hagedorn et al.
2005).

For climate simulations, Stainforth er al. (2005) use widely distributed
desktop computers to conduct over 2500 simulations of future climate in a
world with doubled CO; levels. These simulations differ in that parameters
within the model physical process parameterization schemes are varied over a
range of values deemed plausible by the scheme developers, and in that they
have variations in the initial conditions. The ensemble mean forecasts are in
agreement with other predictions, indicating a global warming of nearly 3.4 K
for doubled CO; conditions. However, the range of warming is much greater
than seen in previous studies, with some simulations indicating warming of
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Figure 11.3. Sca-level pressure (contoured every 2 hPa) and 3h accumulated
convective rainfall (mm shaded) at the 24 h forecast time from six dilferent
mesoscale short-range ensemble members with parameterization scheme
diversity valid at 0000 UTC 4 May 1999. While the sea-level pressure
patterns are very similar in the six members, the rainfall patterns and amounts
are very different. This highlights the importance of model parameterizations to
the resulting forecasts and the nced for parameterization diversity in
ensemble forecasting systems. From Stensrud and Weiss (2002).

over 10 K 1s possible and others indicating very little warming at all. This result
highlights the importance of the model physical process parameterizations
to climate modeling, the need for improved parameterizations. and the need
for a better understanding of how to create ensembles (o respond to the ever
increasing demand for more accurate and skillful weather information across
a range of temporal scales.
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In retrospect, this situation should not be surprising. We have seen that
parameterization schemes can provide very different answers under the same
environmental conditions. It is also possible that some parameterization schemes
are entirely locked out of some environmental conditions and will never be
able to reproduce the observed atmospheric behaviors in these environments.
One example of this situation is the Betts Miller convective parameterization
being unable to develop convection in “loaded-gun” soundings (Fawbush and
Miller 1954) that are typical of severe storm environments. This situation
occurs because loaded-gun soundings have very dry mid-levels. such that the
scheme fails to activate and hence is not able to produce rainfall. Thisis not to
say that the Betts—Miller scheme is without value; it does an incredibly good
job in many locations, but on the relatively rare occasion when these severe
storm environments occur it is not able to activate. One can easily think of
other examples in microphysical parameterizations, where some interactions
between the various microphysics species are not included in the scheme,
thereby locking out some behaviors. Another example 1s radiation parameter-
izations that do not allow for partly cloudy skies.

With the realization that parameterization schemes are imperfect and may
not even function realistically in some environments, the idea of ensembles
with model or model parameterization diversity in addition to initial condition
uncertainty becomes very appealing and intuitive. The value of this type of
approach is that the ensemble is more likely to be capable of reproducing the
observed atmospheric phenomena over a broader range of environmental
conditions, owing to the variety of parameterization schemes being used. It
maximizes the chances that at least one of the parameterization schemes is
capable of producing a realistic forecast for a given environment. 1t may be
that not all members are equally plausible in a given environment, but over the
entire range of environments visited by the almosphere many parameteriza-
tions are equally skillful. The only argument for ensembles without model or
model physics diversity is that all the parameterization schemes function well in
all environmental conditions, a hypothesis that appears questionable at best.

11.3 Ensembles and high-resolution single forecasts

Computer resources are a [inite quantity. Even with the incredibly rapid
increases in computer processor speed, model developers and users are able
to consume all the available processor cycles. This is particularly true in
operational centers. where one also wants to make the best use of these
precious resources. This situation has led occasionally to a perceived competi-
tion between high-resolution single deterministic forecasts and ensembles,
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Figure 11.4. Cloud-scale model prediction (left) and observed (right) radar
reflectivity fields valid 0100 UTC 11 May 2005. While the cloud-scale model
clearly captures the typical types of reflectivity structures seen in the
observations, the model has clearly missed the thunderstorms active in
Nebraska and Iowa and misplaced the convection in Minnesota (in the
upper right portion of the figure) southwestward. Image created as part of
the Storm Prediction Center 2005 spring forecasting experiment.

since both ensembles and high-resolution (i.e., small grid spacing) single fore-
casts are very computationally demanding. The argument for high-resolution
deterministic forecasts derives from the desire to have forecast models that are
capable of predicting the observed atmospheric phenomena that are deemed
most important. Without argument, high-resolution forecasts may be quite
valuable for forecasting commonly observed, small-scale features with large
societal or economic impact. such as severe thunderstorms and sea breezes.
However, participation in several spring forecasting experiments that evaluated
high-resolution (2 and 4 km grid spacing) operational forecasts of deep convec-
tion suggests that the lack of uncertainty information hampers the best of these
forecasts (Fig. 11.4). It is not clear that some of the behaviors that are explicitly
seen in high-resolution forecasts cannot be anticipated from the environmental
conditions of lower-resolution forecasts with just as much skill (see discussions
of Brooks ez a/. 1992 and Roebber e al. 2004). It is generally easier to disagree
with lower-resolution forecasts than it is to disagree with forecasts that provide
data on the same scales as the best of our observational systems.

In forecasts over western Washington state, Colle ez al. (2000) show signifi-
cant forecast improvement as the model grid spacing is decreased from 36 to
12km. However, little forecast improvement is seen as the grid spacing is further
decreased from 12 to 4km. Over the northeastern United States, Colle et al.
(2003) show little improvement at all when going from 36 to 12 km grid spacing,
likely owing to the less sharp terrain features in the northeastern as compared
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to the northwestern United States. Gallus (1999) further indicates little or
no increase in forecast skill when reducing from 30 to 10km grid spacing
in simulations of several midwestern convective systems. These results clearly
highlight that model grid spacing by itself is not necessarily the answer to
forecast improvements. While the optimal grid spacing for a given model likely
depends upon a host of factors, including data assimilation systems, observa-
tional density, and model parameterization schemes, any general assumption
that a reduction in the grid spacing automatically leads to improved forecasts
must be suspect.

Instead of a competition between ensembles and high-resolution determi-
nistic forecasts, there may be ways to merge high-resolution forecasts that are
capable of reproducing the smaller-scale features of significant societal and
economic interest with an ensemble forecasting system. Stensrud et al. (2000b)
and Leslie and Speer (2000) discuss this situation, and suggest a combined
forecast system in which an ensemble using larger grid spacing is run first and
the results evaluated using clustering methods to define the most likely forecast
scenarios of the day (e.g.. Alhamed er @l. 2002; Yussouf et al. 2004). These
most likely forecast scenarios are then used to provide boundary conditions
and a first-guess field for assimilating data into a small grid spacing forecast
system. Using this type of approach, ensembles are used to ensure that the
high-resolution forecast is actually a likely scenario and not one that is outside
of the set of ensemble solutions. With a bit more ingenuity, many other
possible ways to merge ensembles with high-resolution forecasts are certainly
possible to provide both detailed forecasts and information on forecast uncer-
tainty. As the forecast time increases past a few days, the value of single
(deterministic) forecasts decreases rapidly and ensembles or other statistical
approaches become the only useful prediction approach.

11.4 Statistical postprocessing

Arguably one of the most overlooked aspects of numerical weather prediction
is the postiprocessing of the forecast data to remove or reduce obvious and
persistent errors. Most of the original operational postprocessing schemes
used multivariate linear regression to relate the model forecast variables to
observations (Glahn and Lowry 1972; Jacks er al. 1990). These techniques
have provided improved forecast guidance to human forecasters for many
decades. The downside to this type of approach is that it requires a lengthy
data archive of both observations and an unchanged model. making it difficult
to use this type of approach when models are changing frequently.
Modifications to this approach to allow for updates have been developed
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(Ross 1989; Wilson and Vallée 2002). Other approaches are also possible, such
as using a Kalman filter (Homleid 1995; Roeger er a/. 2003) and other regres-
sion techniques (Mao er al. 1999; Hart er al. 2004).

With the advent of ensembles, other approaches 1o postprocessing have
been developed. Krishnamurti e a/. (2000) show how a simple bias correction
approach can improve the precipitation forecasts in a global ensemble.
Stensrud and Yussouf (2003, 2005) and Woodcock and Engel (2005) show
that a bias correction approach when applied to near-surface variables yields
results that improve upon model output statistics (MOS) and also provide
reliable probability forecasts for the short-range predictions of sensible
weather (Fig. 11.5). A different approach, called reforecasting, produces an
ensemble of retrospective reforecasts from a fixed model over a long time
period (15 23 years) in order to diagnose the operational model bias and to
provide improved precipitation forecasts using a regression approach (Hamill
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Figure 11.5. Attribute diagram for 2 m temperatures equal to or exceeding
303 K created from a 31-member ensemble over North America. Dashed line
indicates results from the raw ensemble, while solid lines indicate results from
two versions of postprocessed ensemble data with the bias removed from
each ensemble member. Note the improved reliability in the postprocessed
cnsemble data. From Stensrud and Yussouf (2003).
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et al. 2004, 2006). Although producing these reforecasts takes months of
computer time, the process is not difficult and leads to significantly improved
operational forecasts (Hamill er /. 2006). These types of efforts maximize the
benefits of the numerical prediction systems and often lead to forecast
improvements that are equivalent to decades worth of model improvement
alone.

11.5 The road forward

A recurring theme in this final chapter is that there is a lot of uncertainty in
how to best use our numerical weather prediction models and their associated
computational resources. The meteorology community has spent over 50 years
learning how to develop deterministic numerical weather prediction models.
The successes arising from this investment are clear and evident every day.
Numerical models handle a wide variety of weather scenarios on a vast range
of spatial and temporal scales very well and influence operational and invest-
ment decisions in a large number of industries. Numerical models and para-
meterizations will continue to improve as new observations, theories, and
ideas are converted into algorithms and studied. Without doubt, numerical
weather prediction is an incredibly active and exciting field that will continue
to vield forecast improvements for vears to come, and one key component of
these forecast improvements will continue to be the physical process para-
meterization schemes.

The improvement of many parameterization schemes often requires colla-
borations with scientists outside of traditional meteorology and atmospheric
science. Not only are meteorologists working with computer scientists, but
also with biologists, plant physiologists, remote sensing scientists, foresters,
engineers, hydrologists, statisticians, ecologists, economists, and oceanogra-
phers. It is clear that the atmospheric sciences are already a multidisciplinary
effort and this trend is only going to continue and probably accelerate. We
must continue to learn the languages of other sciences in order to learn from
their expertise and continue to improve model forecasts.

Bevond the models themselves, we also need to be concerned with how best
to use and support our computational and human resources. Some scientists
strive to improve finite-differencing or parameterization schemes, while others
are working in data assimilation or basic research. Few live in the transition
zone between research and operations, and fewer still have the time to step
back and look more broadly at how we use these tools we build. For example,
not many meteorologists examine how these numerical tools are used by
human forecasters to provide guidance products to the public, or to produce
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forecasts tailored to specific end user communities. Many studies show that
human forecasters routinely improve upon numerical guidance in a variety of
ways (Olson et al. 1995: Leftwich er al. 1998; McCarthy et al. 1998; Reynolds
2003), vet it is not clear that we are providing the forecast data to forecasters in
ways that would allow for the best use of this information or that we are even
providing the correct information for all forecast concerns. It also may be that
the output from weather and climate models can provide sufficient informa-
tion to improve human and environmental conditions in ways we never
thought possible. An increased emphasis on collaboration between model
developers and a broad spectrum of the model user community could be
very beneficial.

It is particularly encouraging that seasonal numerical weather prediction
systems are starting to be linked directly to models that predict specific human
impacts such as malaria incidence (Morse er al. 2005) and crop yield
(Cantelaube and Terres 2005; Challinor er al. 2005; Marletto et al. 2005).
These types of linkages could have a substantial impact on planning activities
that lead to disease prevention and crop selection. Connections between the
predictions from global climate models and ecosystem responses are also being
explored (Higgins and Vellinga 2004). In short-range forecasting, numerical
weather prediction models are being linked to emission and chemistry models
to predict air quality (Otte er @/. 2005), and are used to alert the public to poor
air quality conditions that affect human and ecosystem health. These types of
activities need to continue and to increase over time to link weather and
climate predictions to other quality of life and quality of environment con-
cerns, and may end up profoundly changing the way in which weather and
climate model predictions are valued and used by the public.

A need also exists to determine more accurately the economic value of
forecasts (e.g.. Morss er al. 2005) in order to strengthen support for these
activities within government budgeting agencies often looking to cut programs
(Doswell and Brooks 1998). While there are a number of case studies illustrat-
ing the value of weather forecasts (e.g., Katz and Murphy 1997), there has yet
to be a sector-wide evaluation of the value of forecasts. This information will
be difficult to obtain, but the need for this activity increases from year to year.

Perhaps we have come to the point where the success of numerical weather
prediction and the forecast enterprise often is taken for granted by many
outside of meteorology. Forecast failures are highlighted, while forecast suc-
cesses are simply viewed as routine. The success of the numerical weather
prediction enterprise breeds increased expectations that model forecasts can
provide information on not only the large-scale weather pattern, but also the
sensible local weather elements (2 m temperatures, rainfall, precipitation type,
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and turbulence) that are much more difficult to predict. There also is increased
expectation that models can provide information on unlikely events, such as
damaging windstorms, tornadoes, tropical cyclones and floods, in order to
help with emergency management activities and disaster planning. On longer
timescales. the global society is looking to the atmospheric sciences for guid-
ance regarding the best crops to plant for the upcoming growing season and
help in understanding how our societies influence global climate change and
the outcomes of any mitigation activities. At this point in time, it should not be
surprising that there is a need to take the time both to learn how to use these
numerical tools most effectively and perhaps even to defend our desires for
further forecast improvement. In some ways, parts of numerical weather
prediction are a victim of their own success. Continued improvements will
occur, but we need to be more careful to illustrate and quantify the value of
numerical model improvements to our constituents — the public - and educate
them in how to use the output from these tools to their best advantage. If this
education occurs, then the future of numerical weather prediction will be
brighter than ever.



