To quantitatively describe and forecast the state of the boundary layer, we turn to the
equations of fluid mechanics that describe the dynamics and thermodynamics of the gases
in our atmosphere. Motions in the boundary layer are slow enough compared to the speed
of light that the Galilean/Newtonian paradigm of classical physics applies. These
equations, collectively known as the equations of motion, contain time and space
derivatives that require initial and boundary conditions for their solution.

Although the equations of motion together with other conservation equations can be
applied directly to turbulent flows, rarely do we have sufficient initial and boundary
condition information to resolve all turbulent scales down to the smallest eddy. We often
don't even care to forecast all eddy motions. For simplicity, we instead pick some cut-off
eddy size below which we include only the statistical effects of turbulence. In some
mesoscale and synoptic models the cutoff is on the order of 10 to 100 km, while for some
boundary layer models known as large eddy simulation models the cutoff is on the
order of 100 m,

The complete set of equations as applied to the boundary layer are so complex that no
analytical solution is known. As in other branches of meteorology, we are forced to find
approximate solutions. We do this by either finding exact analytical solutions to
simplified subsets of the equations, or by finding approximate numerical solutions to a
more complete set of equations. Both approximations are frequently combined to allow
boundary layer meteorologists to study particular phenomena.

In this chapter we start with the basic governing equations and statistically average
over the smaller eddy sizes. Along the way we demonstrate simplifications based on
boundary layer scaling arguments. Numerical methods for solving the resulting set of
equations are not covered.
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3.1 Methodology

Because the upcoming derivations are sometimes long and involved, it is easy "to lose
sight of the forest for the trees”. The following summary gives the steps that will be taken
in the succeeding sections to develop prognostic equations for mean quantities such as
temperature and wind:

Step 1. Identify the basic governing equations that apply to the boundary layer.

Step 2. Expand the total derivatives into the local and advective contributions.

Step 3. Expand dependent variables within those equations into mean and
turbulent (perturbation) parts.

Step 4. Apply Reynolds averaging to get the equations for mean variables within
a turbulent flow.

Step 5. Add the continuity equation to put the result into flux form.

Additional steps take us further towards understanding the nature of turbulence itself:

Step 6. Subtract the equations of step 5 from the corresponding ones of step 3 to
get equations for the turbulent departures from the mean.

Step 7. Multiply the results of step 6 by other turbulent quantities and Reynolds
average to yield prognostic equations for turbulence statistics such as
kinematic flux or turbulence kinetic energy.

Section 3.2 covers steps 1 and 2. Section 3.3 takes a side road to look at some
simplifications and scaling arguments. In section 3.4 we get back on track and utilize
steps 3-5 to derive the desired prognostic equations. After a few more simplifications in
section 3.5, a summary of the governing equations for mean variables in turbulent flow is
presented.

Steps 6 and 7 are addressed in Chapters 4 and 5.

3.2 Basic Governing Equations

Five equations form the foundation of boundary layer meteorology: the equation of
state, and the conservation equations for mass, momentum, moisture, and heat.
Additional equations for scalar quantities such as pollutant concentration may be added. It
is assumed that the reader has already been exposed to these equations; hence, the
derivations are not given here.

3.2.1 Equation of State (Ideal Gas Law)
The ideal gas law adequately describes the state of gases in the boundary layer:
P = Par SRTV (3.2.1)

where p is pressure, p,;, is the density of moist air, T, is the virtual absolute temperature,

and R is the gas constant for dry air (R = 287 J.K-! kg'!). Sometimes, the density of
moist air is abbreviated as p for si mplicity.
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3.2.2 Conservation of Mass (Continuity Equation)

Two equivalent forms of the continuity equation are

a(pU.
o, 29 _ (3.2.22)
ot E}xj
and
oU.
dp +p—L =0 (3.2.2b)
dt ox,
i

where the definition of the total derivative is used to convert between these forms.

If V and L are typical velocity and length scales for the boundary layer, then it can
be shown (Businger, 1982) that (dp/dt )/p « dUy/dx; if the following conditions are met:
(1) V«100mfs; 2) L«12km; (3) L« Cszfg; and (4) L « CJ/f, where C, is the
speed of sound and f is frequency of any pressure waves that might occur. Since these

conditions are generally met for all turbulent motions smaller than mesoscale, (3.2.2b)
reduces to

au

—i-0 (3.2.2¢)
axj

This is the incompressibility approximation.

3.2.3 Conservation of Momentum {Newton's Second Law)

As presented at the end of section 2.8.2, one form for the momentum equation is

VoMl 5. 2e ou  L® 1% (3.2.32)
— + U =—"=-38,g-2¢, QU -—= +—=2 2.3a
ot Jaxj jk = paxi paxj
I I I v \ VI

Term1 represents storage of momentum (inertia).

Term I describes advection,

Term IIT allows gravity to act vertically.

Term IV describes the influence of the earth's rotation (Coriolis effects).
Term V describes pressure-gradient forces.

Term VI represents the influence of viscous stress.
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In term IV, the components of the angular velocity vector of the earth's rotation Q; are
[0, ® cos($), ® sin(¢p)] where ¢ is latitude and ® = 27 radians/24h = (7.27x103 s°1) is
the angular velocity of the earth. Often term IV is written as  + f, &3 Uj, where the

Coriolis parameter is defined as f, =2 ®sin ¢ = (1.45x10* s°1) sin ¢. For a
latitude of about 44° (e.g., southern Wisconsin), f, = 1045,

To a close approximation, air in the atmosphere behaves like a Newtonian fluid.
Thus, the expression for viscous stress from section 2.9.3 allows us to write term VI as:

;)
J

where the bulk viscosity coefficient pg was assumed to be near zero. Upon applying the

i

(1}3 v, BUJ (2\ PUR’
Term VI = 0 a_x} .Lla—xj+'§;<i—i— 3)1-L axk

L
Ay

derivative to each term, assuming that the viscosity W is not a function of position, and

rearranging, this expression can be written as:
2 2 aUk—ll
3 axi ox

e VI f.u) j
erm = | e | . |7
Lp 9%,

v, feu,
ax’ ox,
]

By assuming incompressibility, this reduces to

Term VI = v 21

where the kinematic viscosity, v, has been substituted for p/p.
Substituting this back into (3.2.3a) gives the form for the momentum equation that is
most often used as a starting point for turbulence derivations:

an U an 5 ¢ . 1 dp aZUi ,
_a": + gaT =058 * c &ij3 L:_a_ - 55;: + v sz (3.2.3b)

where each term represents the same process as before.
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3.2.4 Conservation of Moisture

Let g, be the total specific humidity of air; namely, the mass of water (all phases) per

unit mass of moist air. The conservation of water substance can be written, assuming
incompressibility, as

9 9 2 S
4r ro_, %9 | = (3.2.4a)
pair

I I VI Vi

where Vv, is the molecular diffusivity for water vapor in the air. SqT is a net moisture

source term (sources - sinks) for the remaining processes not already included in the
equation. Its units are: mass of total water per unit volume per unit time.

By splitting the total humidity into vapor (q) and non-vapor (q; ) parts using gy = q +
qr and Sq; =S4 + S, (3.2.4a) can be rewritten as a pair of coupled equations

3g 3q a%q 5,

E

_— + U= = v — 3+ - 4+ = (3.2.4b)

ot ! an : 8X2 I:)a:i.r pai.r
and

aq 9q 8

TL + Uj?}_h - s O E (3.2.4¢)
t % Pair P air
I II VI VI VIII

where E represents the mass of water vapor per unit volume per unit time being created by
a phase change from liquid or solid. The convergence of falling liquid or solid water
(e.g., precipitation) that is not advecting with the wind is included as part of term VII. It
has been assumed in (3.2.4¢) that molecular diffusion has a negligible effect on liquid and
solid precipitation or cloud particles.

Terms I, II, and VI are analogous to the corresponding terms in the momentum
equation. Term VII is a net body source term, and term VI represents the conversion of
solid or liquid into vapor.

3.2.5 Conservation of Heat (First Law of Thermodynamics)

The First Law of Thermodynamics describes the conservation of enthalpy, which
includes contributions from both sensible and latent heat transport. In other words, the
water vapor in air not only transports sensible heat associated with its temperature, but it
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has the potential to release or absorb additional latent heat during any phase changes that
might occur. To simplify the equations describing enthalpy conservation,
micrometeorologists often utilize the phase change information, E, contained in the

moisture conservation equations. Thus, an equation for 6 can be written

2 2Q. L E

%e + Ujg—e = vaa—f— - an - =R (3.2.5)
% ax; PC %) pC,
I I VI VI VI

where Vo is the thermal diffusivity, and L, is the latent heat associated with the phase

change of E. The values for latent heat at 0°C are L, = 2.50 x 10° J/kg (gas:liquid), Le=
3.34 x 10° J/kg (liquid:solid), and L, = 2.83 x 105 J/kg of water (gas:solid).

Q*j is the component of net radiation in the j® direction. The specific heat for
moist air at constant pressure, Cp, is approximately related to the specific heat for dry
air, Cpq = 1004.67 JTkg-1 K-1,by C, = Cyq(1+0.84q). Given typical magnitudes
of q in the boundary layer, it is important not to neglect the moisture contribution to G

Terms I, II, and VI are the storage, advection, and molecular diffusion terms, as
before. Term VII is the "body source" term associated with radiation divergence. Term
VIII is also a "body source” term associated with latent heat released during phase
changes. These body source terms affect the whole volume, not just the boundaries.

3.2.6 Conservation of a Scalar Quantity

Let C be the concentration (mass per volume) of a scalar such as a tracer in the
atmosphere. The conservation of tracer mass requires that

aC oC aC

e A I (3.2.6)
j axj

I I VI VII

where V¢ is the molecular diffusivity of constituent C. S is the body source term for

the remaining processes not already in the equation, such as chemical reactions. The
physical interpretation of each term is analogous to that of (3.2.4¢).

3.3 Simplifications, Approximations, and Scaling Arguments

Under certain conditions the magnitudes of some of the terms in the governing
equations become smaller than the other terms and can be neglected. For these situations
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the equations become simpler — a fact that has allowed advances to be made in
atmospheric dynamics that would otherwise have been more difficult or impossible.
One simplification is called the shallow motion approximation {Mahrt, 1986).
This approximation is valid if all of the following conditions are true:
1) the vertical depth scale of density variations in the boundary layer is
much shallower than the scale depth of the lower atmosphere. (This
latter scale depth = p (9p/dz)! = 8 km.);
2) advection and divergence of mass at a fixed point approximately balance,
leaving only slow or zero variations of density with time.
3) the perturbation magnitudes of density, temperature, and pressure are
much less than their respective mean values; and
A more stringent simplification, called the shallow convection approximation,
requires all of the conditions above plus:
4) the mean lapse rate (0T/dz) can be negative, zero, or even slightly
positive. For the statically stable positive case, (6T/dz) « g/R, where
/R =0.0345 K/m; and
5) the magnitude of the vertical perturbation pressure gradient term must be
of the same order or less than the magnitude of the buoyancy term in the
equation of motion,
This latter condition says that vertical motion is limited by buoyancy, which is origin of
the term "shallow convection".
We have already employed conditions (1) and (2) to yield the incompressible form of

the continuity equation. The other conditions will be applied below to yield further
simplifications.

3.3.1 Equation of State

Start with the equation of state (3.2.1) and split the variables into mean and turbulent

parts: p=p+p', T =T + T', p =P + p'.Theresultcan be rearranged to be

= (p+p)-(T, + T,)
or

=p T, +p T, +pT,  +pT, (3.3.1a)

=pT, +pT,

v
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The last term is usually much smaller in magnitude than the others, allowing us to neglect
it. As aresult, the equation of state holds in the mean;

P o5t (3.3.1b)
g{ v

This is a reasonable approximation because the equation of state was originally
formulated from measurements made with crude, slow-response sensors that were
essentially measuring mean quantities. As we shall see in section 3.4, however, we can't
make similar assumptions for the other governing equations.

Subtracting (3.3.1b) from (3.3.1a) leaves

Finally, dividing by (3.3.1b) gives

e

=-?—-_—-+
P

~u||

T, PT,

Using condition (3) above and the data below, one can show that the last term is smaller
than the others, leaving the linearized perturbation ideal gas law:

v
v

T,

v

-D.
—

p‘
= = + 3.3.1c
5 ( )

©l|

Static pressure fluctuations are associated with variations in the mass of air from
column to column in the atmosphere. For the larger eddies and thermals in the boundary
layer, these fluctuations may be as large as 0.01 kPa (0.1 mb), while for smaller eddies
the effect is smaller. Dynamic pressure fluctuations associated with wind speeds of up to

about 10 my/s also cause fluctuations of about 0.01 kPa. Thus, for most boundary layer

situations, p'/P = 0.01 kPa/100kPa = 10~ which is smaller than

TV’/"'T; =1K/300K = 333x 10'3. For these cases we can make the shallow

convection approximation [conditions (4) & (5)] to neglect the pressure term, yielding:

v

= - 3.3.1d
T ( )

oI®
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Using Poisson's relationship with the same scaling as above yields:

= - (3.3.1¢)

Physically, (3.3.1¢) states that air that is warmer than average is less dense than
average. Although not a surprising conclusion, these equations allow us to substitute
temperature fluctuations, easily measurable quantities, in place of density fluctuations,
which are not so easily measured.

3.3.2 TFlux Form of Advection Terms

All of the conservation equations of section 3.2 include an advection term of the form
Advection Term = U; 9&/0x;

where £ denotes any variable, such as a wind component or humidity. If we multiply the
continuity equation (3.2.2¢) by &, we get & dUy/ox; =0. Since this term is equal to
zero, adding it to the advection term will cause no change (other than the mathematical
form). Performing this addition gives

Advection Term = U; 08/0x; + & dUy0x;
By using the product rule of calculus, we can combine these two terms 1o give
Advection Term = 9(EU;)/ox; (3.3.2)

This is called the flux form of the advection term, because as was demonstrated in
section 2.6 the product of (§U ;) is nothing more than a kinematic flux.

3.3.3 Conservation of Momentum

Vertical Component. By setting i =3 in (3.2.3b), we can focus on just the
vertical component of momentum to study the role of gravity, density, and pressure on
turbulent motions. Utilizing U; =W and the definition of the total derivative, dUy/dt =
an}fat + U} anfla)(j, givcs

@ T8

AW 1 [ap] N W
x>
]

) oz
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In the following development, we will treat viscosity as a constant. Multiply the

above equationby p andlet p=p+p', W=W + w'and p="P + p':

— — 2 —
— AWy 3(P+p") 3 (W+w')
P+p)—g——=-b+p)e 5, t M g

%

Dividing by p and rearranging gives:

l\ T ] v 1 2 o7 ¥ EF a? _
(1+_E_Jd(\v+w) :_‘F-)-_g_;_a-p_+va(w+w)hé §—+Pg
p dt p p oz ax2 pL Z

If we assume that the mean state is in hydrostatic equilibrium (P/dz =pgl
then the term in square brackets is zero. Furthermore, if we remember from section 3.3.1

that p'/p is on the order of 3.33 x 10~ , then we see that the factor on the left hand side
of the equation is approximated by (1 +p'/p)=1. We can't neglect, however, the first

term on the right hand side of the equal sign, because the product [p/p g ] is as large as
the other terms in the equation. The process of neglecting density variations in the inertia
(storage) term, but retaining it in the buoyancy (gravity) term is called the Boussinesg
approximation. These two approximations leave

d(\_f"+w') p_'o
dt p -

A prerequisite for the Boussinesq approximation is that the shallow convection conditions
be satisfied.

By comparing the original equations to the scaled equations above, one finds

differences in the terms involving p and g. Thus, a simple way to apply the Boussinesq
approximation without performing the complete derivation is stated here:

_—_H——_——____—'—_'——__—_*_l_‘_—_—____—_—__
Practical Application of the Boussinesq Approximation:
Given any of the original governin g€ equations, replace every occurrence

of p with p, and replace every occurrence of g with [ g- (Bv'fﬁv)g]
—_—
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Although subsidence, W, is important in mass conservation and in the advection of
material (moisture, pollutants, etc) from aloft, we see that it is less important in the
momentum equation because it is always paired in a linear manner with w'. In fair-
weather boundary layers, subsidence can vary from zero to 0.1 m/s, which is considered a
relatively large value. This is small compared to the vertical velocity fluctuations, which
frequently vary over the range 0 to 5 m/s. Thus, for only the momentum equation for
fair-weather conditions can we usually neglect subsidence:

W

n

0 (3.3.3a)

This leaves the vertical component of the momentum equation as

—ig - =
\p)f paz axj

dw' (D‘\ 1 9p' 2w
— = - + v
at

Using (3.3.1) to replace the density variations with temperature variations gives

' 0; 1 p' w'
dw' _ {: g - 22 I (33.30)
8, p oz axj

The physical interpretation of the first two terms in (3.3.3b) is that warmer than
average air is accelerated upward (i.e., hot air rises). The last two terms describe the
influences of pressure gradients and viscous stress on the motion. This equation therefore
plays an important role in the evolution of convective thermals.

Horizontal Component. Although the BL winds are rarely geostrophic, we can
use the definition of the geostrophic wind as a substitute variable for the horizontal
pressure gradient terms:

1 dp
7 e 2
and fc‘vg = + 5 ax (3.3.3c)

A

|~
¥
= o

fuU, = -

¢ &

Thus, the horizontal components of (3.2.3b) become
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2
aw -f(V -V)+va—9— (3.3.3d)
dt ¢t g 2
Ox,
1
dav otV
—_— = +f (U -U) + v— (3.3.3¢)
dt ¢ 8 2
X,
]
I I I

Term 1 is the inertia or storage term. Term II is sometimes called the geostrophic
departure term, because it is zero when the actual winds are geostrophic. As we stated
before, however, the winds are rarely geostrophic in the BL. Term III describes viscous
shear stress.

Combined Momentum Equation. Combining the results from the previous two
subsections yields

ay, U, 0, 3y,
+ UjE= -€.. T (Ugj-Uj) + 0, 5 g - E— +v—21

ot i3 "¢

v

(3.3.39)

where we have applied the shallow convection, incompressibility, hydrostatic and
Boussinesq approximations, and where Ug; = (Ug, Vg, 0).

3.3.4 Horizontal Homogeneity

Expanding the total derivative of any mean variable, £, yields

L uEivELwd

dt ot ox dy (.34

I I m v

From examples like Figs 1.12 and 2.9 we saw that averaged variables such as potential
temperature or turbulence kinetic energy exhibit large vertical variations over the 1 to 2 km
of boundary layer depth. Those same variables, however, usually exhibit a much smaller
horizontal variation over the same 1 to 2 km scale. Counteracting this disparity of
gradients is a disparity of velocities. Namely, U and V are often on the order of m/s while
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W is on the order of mm/s or cmy/s. The resulting terms I through IV in the above
equation are thus nearly equal in magnitude for many cases.

The bottom line is that we usually can not neglect horizontal advection (terms II &
1II), and we can not neglect subsidence (term IV) as it affects the movement of conserved
variables.

Sometimes micrometeorologists wish to focus their attention on turbulence effects at
the expense of neglecting mean advection. By assuming horizental homogeneity,

we can set aE/ax =0 and 0E@y =0, and neglecting subsidence gives W=
0. Although these assumptions are frequently made by theorists to simplify their
derivations, they are rarely valid in the real atmosphere. When they are made, they canse

the advection terms of only mean variables (like & ) to disappear; the turbulent flux terms
do not disappear, and in fact are very important.

3.3.5 Reorientating and Rotating the Coordinate System

Although we usually use a Cartesian coordinate system ali gned such that the (x, y, z)
axes point (east, north, up), sometimes it is convenient to rotate the Cartesian coordinate
system about the vertical (z) axes to cause x and y to point in other directions. Some
examples include aligning the x-axis with:

the mean wind direction,

the geostrophic wind direction

the direction of surface stress, or
perpendicular to shorelines or mountains.

The only reason for doing this is to simplify some of the terms in the governing
equations. For example, by choosing the x-axis aligned with the mean wind, we find
U=M and V=0. In such a system, the x-axis is called the along-wind direction and
the y-direction is called the crosswind direction.

3.4 Equations'for Mean Variables in a Turbulent Flow

3.4.1 Equation of State

As was already stated in section 3.3.1, the equation of state is assumed to hold in the
mean, and is rewritten here for the sake of organization:

P -
P oo (3.4.1)
R

3.4.2 Continuity Equation

Start with the continuity equation (3.2.2¢c) and expand the velocities into mean and
turbulent parts to give:
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a(ﬁj + uj') _

axj
or
EI-J-J; + Eui =0 (3.4.2a)
ox, axj - ’
Next average over time
an ai o
axj ij

Upon applying Reynold's averaging rules, the last term becomes zero, leaving

aU.
—1 =90 (3.4.2b)
axj

Thus, the continuity equation holds in the mean. Subtracting this from (3.4.2a) gives the
continuity equation for turbulent fluctuations:

du.'

-y (3.4.2¢)
8xj.

This equation will allow us to put turbulent advection terms into flux form, in the same
manner as was demonstrated for (3.3.2).

3.4.3 Conservation of Momentum

Starting with the conservation of momentum expressed by (3.2.3b), make the
Boussinesq approximation:

-

% oU; 0, 1 ap VAU,
-1 + U_I -_— = _6i3 g-l=1lg + fcei'EU' L T i
at axj 6 B7 D ox, ax'_‘?

J

v

Next, expand the dependent variables into mean and turbulent parts (except for the

8,78, term, for which the expansion has previously been made):
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3T, +u) (U, +u)(T, +u)) R _
i LSRN B i =-0,l¢ \M—J gl + fceij3 (UJ.+ uj’)

ot BxJ' e_v
1) 2Tt e)
P Ix; ox°

Upon performing the indicated multiplications, and separating terms, we find

30, ou’ UU U odu| u'oU.  u'du.
it RRAS SRR s il B e SN Bt S
ot ot ox. x. ox. ox.
1 h] ] ]
8/ _ 19 1ap T,
—S,g+6.(T_v—)c+fs..U.+fs,.u.‘—:—--_——~+v Ly y—1
i3 i3\g |° cTij3 7] ¢i37] ax. ox. 2 2
v p p 9%
i axj axj
(3.4.3a)
Next, average the whole equation:
oU. ou' U ouU, U"_.au‘i u.' BL_’i u, du.'
1y LI ] Lage J + + —
ot at ox. ox, x, x,
i ] j i
5.g+ 8 (evrj +1e U +Eeu - = ok _1op azﬁi azuil
"0+ O =8 Eiphy T LERY T T T TV + Vv
v p Xi p X. 2 2
i dax axj

By applying Reynolds averaging rules the second, fourth, fifth, eighth, tenth, twelfth and
fourteenth terms become zero. We are left with:

oU. TUoU., u ou, {3 voU
—at—l + é -+ Ja —= -3, + fg5U; - S ox. _"2_1
X X p 9% 0x;  (3.4.3b)

Finally, multiply the continuity equation for furbulent motions (3.4.2¢) by vy, average
it, and add it to (3.4.3b) to put the turbulent advection term into flux form:
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U, ToU, a@w) — 1 p vaT,
e SRR =-8.g+fa..U,-:a—P+ -
ot ox; 0X; 3 W P oox ax2
J

By moving this flux term to the right hand side of the equation, we see something very
remarkable; namely, the following forecast equation for mean wind is very similar to the
basic conservation equation we started with (3.2.3b), except for the addition of the
turbulence term at the end.

— —_  — R
ou. au. _ 1 g5 VvoU, o@u'u)
=+ U, — =-8.g+fe.U - = L& + -
ot i ox;: i3 e i3] ox. 2 0X;
X; p Ox, Y% Xj
(3.4.3¢)
I I I IV A VI X

TermI represents storage of mean momentum (inertia).

Term I describes advection of mean momentum by the mean wind.

Term III allows gravity to act in the vertical direction only.

Term IV describes the influence of the earth's rotation (Coriolis effects).

Term V  describes the mean pressure-gradient forces.

Term VI represents the influence of viscous stress on the mean motions.

Term X represents the influence of Reynolds' stress on the mean motions (see
section 2.9.2). It can also be described as the divergence of turbulent
momentum flux,

Term X can also be written as (1/p) a’cij Rcymldsfaxj where T4 Reynotds = ~ P YU uj’

The implication of this last term is that turbulence must be considered in making
forecasts in the turbulent boundary layer, even if we are trying to forecast only
mean quantities. Term X can often be as large in magnitude, or larger, than many

other terms in the equation. Sometimes term X is labled as "F" by large-scale dynamists
to denote friction.

3.4.4 Conservation of Moisture

For total specific humidity, start with (3.2.4a) and split the dependent variables into
mean and turbulent parts:

rd
—8& . dq, U, 9q; . U, Jq ' . u 9qy . uj'aqT'
at at axj ij axj axj
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vy vaq s
4 —+ 3 ¥ =L (3.4.42)
a){j axj pair

where the net remaining source term, Sq‘r’ is assumed to be a mean forcing. Next,

average the equation, apply Reynolds' averaging rules, and use the turbulent continuity
equation to put the turbulent advection term into flux form:

— —_— — 2—. J—
d U.o v d S d(u.'q..)
Sr i _ P9 Cer T (3.4.4b)
ot ox. 5 2 . ox,
] X air ]

Term1 represents the storage of mean total moisture.

Term I describes the advection of mean total moisture by the mean wind.
Term VI represents the mean molecular diffusion of water vapor.

Term VII is the mean net body source term for additional moisture prooesses
Term X represents the divergence of turbulent total moisture flux.

As before, this equation is similar to the basic conservation equation (3.2.4a), except
for the addition of the turbulence term at the end. Similar equations can be written for the
vapor and non-vapor parts of total specific humidity.

3.4.5 Conservation of Heat

Start with the basic heat conservation equation (3.2.5) and expand the dependent
variables into mean and turbulent parts

6 26 U900 U.90' u/d6 u/ 00

oo T Tk T Tk T Tk T Tk T
J ] J ]
v,oe ve 1 a_j 1 Q) LE
2 + 2 - —_— = - = 3 - = (3.4.53)
3 ax PC, 9%  PpC, K pC,

Next, Reynolds average and put the turbulent advection term into flux form to give:
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5 U.08 0% 1 9Q o, o'
%, 0% vo8 19 LE M g4y
a o ax? pC, 3 pC,

I II VI Vi Vil X

Term1 represents the mean storage of heat.

Term II describes the advection of heat by the mean wind.

Term VI represents the mean molecular conduction of heat.

Term VIIis the mean net body source associated with radiation divergence.
Term VIII is the body source term associated with latent heat release.
Term X represents the divergence of turbulent heat flux.

3.4.6 Conservation of a Scalar Quantity

Start with the basic conservation equation (3.2.6) of tracer C and expand into mean
and turbulent parts:

aoC ac' ﬁja_c- ﬁjac' uj' oC uj'ac'
ra- el - P P S P
] ki ] ]
o°C ¢
A (3.4.62)
% ox’ ¢

J h]

where the net remaining source term, S, is assumed to be a mean forcing. Next,
Reynolds average and use the turbulent continuity equation to put the turbulent advection
term into flux form:

= T.9C vac )
o R G40
j axj i
I I VI Vi X

TermI represents the mean storage of tracer C.

Term II describes the advection of the tracer by the mean wind.

Term VI represents the mean molecular diffusion of the tracer.

Term VII is the mean net body source term for additional tracer processes.
Term X represents the divergence of turbulent tracer flux.



GOVERNING EQUATIONS FOR TURBULENT FLOW 93

3.5 Summary of Equations, with Simplifications

To simplify usage of the equations, we have collected them in this section and
organized them in a way that similarities and differences can be more easily noted. Before
we list these equations, however, we can make one additional simplification based on the
scale of viscous effects vs. turbulent effects on the mean fields.

3.5.1 The Reynolds Number

The Reynolds number, Re, is defined as
Re = VL/v = pVL/u (3.5.1)

where V and L are velocity and length scales in the boundary layer. Given v, =
1.5 x 10 m2s! and the typical scaling values ¥V = 5m/s and L = 100 m in the
surface layer, we find that Re =3 x 107,  In the atmospheric mixed layer, the Reynolds

number is even larger. The Reynolds number can be interpreted as the ratio of inertial to
viscous foreings.

3.5.2 Neglect of Viscosity for Mean Motions

In each of the conservation equations except mass conservation, there are molecular
diffusion/viscosity terms. Observations in the atmosphere indicate that the molecular
diffusion terms are several order of magnitudes smaller than the other terms and can be
neglected.

For example, after making the hydrostatic assumption, the momentum conservation
equation for mean motions in turbulent flow (3.4.3¢) can be rewritten as

— — - — 2=

_ouU, M1 9P o] TN !

L +YUisg| = [fce-.SU}_-féa—P . l—?—}—)— - oy Y, 1 v = |

ot X; T g ox| T p oy ox; Re ox, ;
(3.5.2)

Each of the terms in square brackets is roughly the same order of magnitude. The last

term, however, is multiplied by (1/Re) -- a very small number (on the order of 10°7).
Hence, the last term can be neglected compared to the rest, except in the lowest few
centimeters above the surface,

3.5.3 Summary of Equations for Mean Variables in Turbulent Flow

Neglecting molecular diffusion and viscosity, and making the hydrostatic and
Boussinesq approximations to the governing equations leaves:
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% =pT, (3.5.3a)
oU,
=L =0 (3.5.3b)
axj
U o0 - o, o) (3.5.3¢)
-5-+Uja—xj-—-fc(vg-V)- o
Vv —aV —_ a(u.'v"
?X + Ua_v =+ (U -U) - (uj (3.5.3d)
t Jgx g ax
1 ]
Ay, —0qr _ — 0 (3.5.3¢)
o Uik T Sar/Pe - 50
] ]
® —o8 1 Q| o)
D T . —I|LE )
%Y X~ pC, | + x, i (3.5.3f)
C Tl EIeRS
€ .g _ s . 0G9 (3.5.3g)
ot J gx, ¢ ox,
1 ]
I II VI X

The similarity between the last five equations reflects that the same forcings are present
in each conservation equation:

Term I represents storage.

Term II represents advection.

Term VI represent sundry body forcings.
Term X describes the turbulent flux divergence.

The covariances appearing in term X reinforce the earlier assertion that statistics play an
important role in the study of turbulent flow.

In the two momentum equations above, the mean geostrophic wind
components were defined using the mean horizontal pressure gradients:
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_ P — 1 oP
Ug = - —1_— %-]?— and Vg =+ e (3.5.3h)
f.p 9 f.p ox
Sometimes the left hand side of equations ¢ thru g are simplified using
U.90)
a0 = 90 + 2 (3.5.31)

dt ot 8xj

where the total derivative d( )/dt is inferred to include only mean advective effects, and
not the turbulent effects.

3.5.4 Examples

Many applications will have to wait until more realistic PBL initial and boundary
conditions have been covered. For now, just a few artificial sample exercises showing
the use of equations (3.5.3) will be presented.

Broblem 1. Suppose that the turbulent heat flux decreases linearly with height

accordingto w'0’ = a-bz wherea= 03 (Kms-l)andb= 3x10-4 (K s-1) . If the

initial potential temperature profile is an arbitrary shape (i.e., pick a shape), then what will
be the shape of final profile one hour later? Neglect subsidence, radiation, latent heating,
and assume horizontal homogeneity.

Solution. Neglecting subsidence, radiation, and latent heating leaves (3.5.3f) as

90 Uob Voo  ou'e") ) Iv'8" ) A(w'")

R T 3y 3z
By assuming horizontal homogeneity, the x and y derivatives drop out, giving
B _ aw'e)
at oz

Plugging in the expression for w'8' gives 96/0t = +b . This answer is not a function

of z; hence, air at each height in the sounding warms at the same rate. Integrating over
time fromt=t,tot gives

8l.=6] + b-tp
The warming in one hour is b (t - t,) = [3x10 (K/s)}-[ 3600 (s)] = 1.08 K.
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Discussion. This scenario frequently occurs in daytime mixed layers. Thus, given
an adiabatic ML initially, the potential temperature profile a bit later will also be adiabatic
because air at all heights is warming at the same rate. 1In fact, anytime the heat flux
changes linearly with height, the shape of the potential temperature
profile will be preserved while it warms, regardless of its initial shape.

Problem 2. If a horizontal wind of 10 m/s is advecting drier air into a region, where
the horizontal moisture gradient is ( 5 g, .1e/k8a;r)/100 km, then what vertical gradient of
turbulent moisture flux in the BL is required to maintain a steady-state specific humidity?

Assume all the water is in vapor form, and that there is no body source of moisture. Be
sure to state any additional assumptions you make.

Solution. A steady-state situation is defined as one where there are no local
changes of a variable with time (i.e., where d( )/dt = 0). Choose the x-axis to be aligned
with the mean wind direction for simplicity. Equation (3.5.3e) becomes

Udg . Wog _ a@'q)  3¢a)  3w'q)
ox oz ~ ox dy oz

No information was given in the problem about subsidence, or about horizontal flux
gradients; therefore, for simplicity let's assume they are zero. This leaves

Udqg  o(w'g)
ox oz
-5 Q-1 o(w'q' o(w'q’)
(10 m/s)]-[5x10 ~ (g, (g, ) m )] =- 5
Thus
a 1.
(‘;Z a) =-5x 10-4 & water (kga.ir ) 13 1

Discussion. A gradient of this magnitude corresponds to a 0.5 (g/kg)(m/s) decrease

of w'q" over a vertical distance of 1 km.  Also, we see from both sample problems that a

decrease of turbulence flux with height (i.e., flux convergence) results in an increase of
the mean variable (e.g., temperature or moisture) with time. For the latter example, the
potential increase was balanced by advective drying,

Problem 3: Assume a turbulent BL at a latitude of 44°N, where the mean wind is 2
my/s slower than geostrophic (i.e., the wind is subgeostrophic). Neglect subsidence, and
assume horizontal homogeneity and steady state,

a) Find the Reynolds stress divergence necessary to support this velocity deficit.

b) If that stress divergence was related to molecular viscosity instead of turbulence,

what curvature in the mean wind profile would be necessary?
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Solution. a) Pick a coordinate system aligned with the stress, for simplicity.
Therefore, use equation (3.5.3c). Assuming horizontal homogeneity, steady state, and
neglecting subsidence leaves

— . ou'w
0= L0 -V -5
or
) aua‘:‘ = fc(v_g -v) = [104(3_1)] {2 (HUJS)] = 2% 10_4‘[11 3_2

b) Looking back at equation (3.4.3c), we see that the viscous stress term is expressed
by Vvo*U/dz%. Thus va?U/dz2 = 2x10** m 5’2 Using the value of v from appendix
C, we can solve for the wind profile curvature 92U/dz*:

30 ) 2x10%ms™)]

- = 1333 (m e
dz

(1.5 x 10 (m%s )]

Discussion. This is a tremendously large value for curvature, If we assume that
such a profile was observed within the the middle of the BL (z=0.5z;), where the wind
speed is, say 5 my/s, then we can integrate the above equation to find the mean wind at any
other height z' away from the middle of the BL:  U(z = 0.5z;+z) = 5 + 6.67 z2
For example, at a height of 0.5z; + 10m, the wind speed would be 672 m/s, assuming no
shear at z;.  Since realistic wind speeds and shears are several orders of magnitude
smaller over most of the PBL, it is apparent that viscous stress plays a much smaller role
than turbulent Reynolds' stress in the mean wind equation. As we shall see later,
however, viscosity is very important for turbulent motions, and can not be
neglected.

3.6 Case Studies
3.6.1 Daytime Cases

The following cases are meant to acquaint the reader with typical observations of some
of the terms in the equations of this chapter. They are analyses of real data, most of which
are based on the BLX83 field experiment near Chickasha, Oklahoma (Stull and Eloranta,
1984). This data set was taken in fair-weather anticyclonic conditions during the daytime
when deep convective mixed layers formed.

Figs 3.1a through 3.3a show heat and moisture fluxes as measured by an
instrumented Queen Air aircraft, flying at about 72 m/s along level flight paths of about 30
km long. Measurements of w, T, and g were taken 20 times per second [i.e., two
measurements per 7.2 m (this is the Nyquist wavelength, discussed in chapter 8)].
From this data, average values over each flight leg were found, and linear trends were
calculated. These were subtracted from the observed values to give w', T', and q'.
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Fig. 3.1 (&) Kinematic heat flux (W'0’) and moisture flux (wW'p, ) at various heights
measured by aircraft during flight 2, May 27, of the 1983 Boundary
klahoma, where p, is the water vapor
density (g waer M3y ). (D) Same data as (a), but normalized with respect
to the top of the mixed layer (z;), and with respect to surface values of
the fluxes. The buoyancy flux { w'e,’} is also plotted.

An FFT (Fast Fourier Transform) filter was used to eliminate all wavelengths longer
than 6.25 km. from these space series. This was necessary to reduce the effect of
unresolved long (mesoscale) waves that would otherwise contaminate the data. The
resulting filtered values were used to calculate kinematic fluxes w' T and w'q' using the
eddy correlation method (i.e., the method of exercise (2) in section 2.12; also see
chapter 10). Thus, the averages are line (spatial) averages, not time averages. Although
each level flight leg took less than 5 min to fly, the many legs making up any one flight
took from 2 to 4 hours to complete. The following table list the flight times, where CDT

denotes Central Daylight Time (CDT =UTC - 5 h):

Table 3-1. Flight information for selected flights during the BLX83 field experiment.

Elight Date
2 27 May 1883
3 28 May 1983
13 14 June 1983

1034
1425
1406

Start (COTY

Duration (hr)

2.5
3.6
3.3

Boundary | ayer
ML
ML

ML
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Fig. 3.2 (a) Kinematic heat flux (w' Bj and moisture flux (W'p,') at various heights
measured by aircraft during ﬂ%ht 3, May 28, of the 1983 Boundary
Layer Expenment BLX83) in k1ahoma where p,is the water vapor
density (Qwater M3 ). (B) Same data as (a} but normalized with respect
to the top of the mixed layer (z), and with respect to surface values of
the fluxes. The buoyancy flux (w's,') is also plotted.
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Each data point in Figs 3.1a to 3.3a represent a flight leg average flux. In general, we
see that the heat flux decreases with height, starting at a large positive value near the
surface, and becoming negative near the top of the mixed layer. The positive heat flux
near the surface is associated with solar heating of the earth's surface, which transfers its
heat to the atmosphere. The negative heat flux near the ML top is associated with the
entrainment of warmer FA air down into the ML (warm air mixed down causes a negative
heat flux). This slope of the heat flux profile causes the temperature to become warmer
with time (see eq 3.5.3f).

There is much more scatter in the moisture flux values in these figures. In general,
they are positive near the surface, implying evaporation of moisture from the ground into
the air. The values just below the top of the ML are also positive, which in this case is
related to dry air being entrained down into the ML (note that moist air moving up and dry
air moving down both yield a positive moisture flux — see section 2.7). Thus, the
moisturizing from the surface and drying from aloft nearly counteract each other in the

cases studied, as indicated by the nearly vertical profile of w'q’ with height (i.e., zero
slope implies zero humidity increase, according to eq 3.5.3¢). Notice that on Flight 3, the
moisture flux increases slightly with height, implying a net drying of the ML.

One problem with these figures is that sufficient time elapses between the low altitude
flights and the high altitude flights that non-stationarity of the ML comes into play. In
particular, the diurnal cycle causes changes in solar heating with time. Also, the top of the
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[ Fig. 3.3 (a) Kinematic heat flux (W'8") and moisture flux (W'p, ) at various heights
measured by aircraft during flight 13, June 14, of the 1983 Boundary
Layer Experiment (BLX83) in Oklahoma, where p, is the water vapor l
density (g water M%ir ). (b) Same data as (a), but normalized with respect
to the top of the mixed layer (z;), and with respect to surface values of
the fluxes. The buoyancy flux ( w'ey') is also plotted.
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ML can increase substantially during that time interval. To remove these effects,
micrometeorologist often normalize their plots. Height is normalized by dividing by the
depth of the ML, z;, Flux is normalized by the concurrent surface value of flux observed
(or estimated).

The resulting normalized flux profiles are shown in Figs 3.1b - 3,3b. In addition, the

buoyancy flux w'6,' is shown. The buoyancy flux has much less scatter than the
other fluxes. Itis largest at the surface, and decreases linearly with height in the ML.

Figs 3.4a-c show the estimated evolution of the potential temperature profile for the
three cases (Crum, et al., 1987). Each data point corresponds to a flight-leg average.
The two profiles shown for flight 3 were started near the surface, and each ended an hour
later above the top of the ML. Thus, the warming that took place during each hour
contaminates the profiles, causing them to appear tilted. The top of each profile is tilted
towards the warmer tempeartures. Just the opposite tilt is observed for the flight 13,
because the flights above the top of the ML were tlown first. In spite of these tilts, it is
obvious that the ML becomes warmer and deeper with time,

Better examples of ML evolution for flight 3 are shown in Figs 3.5 and 3.6. The data
set in these figures was taken while the aircraft climbed or descended, thereby making
soundings. Given typical descent rates of the aircraft, measurements were made with
about 0.5 m resolution in the vertical (extremely high resolution soundings).
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It took about 10 minutes to complete a sounding, so we can essentially consider the
soundings to be instantaneous. These sounding legs were started at the following times:

Legl - 1438CDT
Leg12 - 1604
Leg22 - 1731

The top of the ML, z;, is very evident by the strong temperature inversion and drop in
humidity. ML growth stands out, as does the warming of the ML. There is little change
in the humidity with time, however.

From Figs 3.5a-c, we can observe the rate of warming, at any height. This can be
compared with the slope of the heat flux profile from Fig 3.2. It is left as an exercise to
use (3.5.3f) to see what percentage of the warming within the ML is associated with
turbulent flux divergence (convergence) and what percentage is associated with other
forcings (radiative, latent heating, advective, etc.).

A similar study can be made for moisture, using the specific humidity evolution
shown in Figs 3.6a-c, and comparing that to the expected moisturizing using the moisture
flux profiles of Fig 3.2 along with (3.5.3¢). For both moisture and temperature, it is
evident that the turbulence term in equations (3.5.3) plays a very important role during
daytime conditions over land, when vigorous convective mixing is occurring.
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Fig. 3.8  Modeled (left) and observed (right) profiles of mean humidity
during Day 33 for Wangara, valid at the local time indicated
{André, et al., 1978).

The 1967 -Wanga.ra field experiment in Australia (Clarke, et al., 1971) also yielded
much useful boundary layer data. André, et al., (1978) have used Day 33 from that
experiment as the basis for a numerical simulation of boundary layer evolution. Fig 3.7

shows the modeled & evolution and the corresponding verification soundings. Modeled
heat fluxes are shown in Fig 3.7c. The nearly uniform potental temperature with height is
apparent, as are the linear heat flux profiles that are a characteristic signature of convective
ML turbulence.

Modeled and observed humidity profiles are shown in Fig 3.8 for the Wangara
experiment. The mean specific humidity decreases slightly with height. This slight slope
occurs when dry air is entraining into the top of the ML, while moisture is evaporating
into the bottom.

Evolution of the observed wind speeds are shown in Fig 3.9. During the afternoon
hours when the mixed layer is over 1000 m thick, the winds within the interior of the ML
have approximately constant wind speed with height. In the surface layer the winds must
decrease towards zero at the ground. Across the entrainment zone at the top of the ML the
winds change to their geostrophic values. For these cases, baroclinicity caused the
geostrophic wind speed in the mixed layer to be faster than those higher above the ground.
As a result, the wind speed above the ML is less than the winds within the ML, even
though the ML winds are subgeostrophic and the FA winds are close to geostrophic.



106 BOUNDARY LAYER METEOROCLOGY

wind (ms™) Wind (ms)

Fig. 3.9 Observed profiles of mean horizontal wind during Day 33,
Wangara (Clarke, et al., 1871).

3.6.2 Nighttime

At nighttime the turbulence is often less vigorous. As a result, other effects such as
advection, radiation, and subsidence become as important or more important than
turbulence in causing changes in temperature and humidity. For example, Fig 3.10
shows BLX83 field experiment data taken during the night of 18 June 1983 near Canton,
Oklahoma (Carlson and Stull, 1986). Part (a) shows the temperature evolution between
2100 CDT (plotted as circles) and 2230 CDT (plotted as squares), as observed by special
high resolution rawinsonde balloon soundings. Cooling is evident near the surface
during this 1.5 hour period, while there is warming aloft.

Also during the night, measurements were made of radiation budgets and subsidence.
Computer models were then used to estimate the contributions of the terms in (3.5.3f)
towards the total cooling/heating, These contributions are shown in part (b), where the
grey lines represent the turbulence part, the dotted line represents radiation divergence,
and the solid lines represent subsidence contributions. For the grey and the solid lines,
two curves are shown to indicate how they evolved with time between the initial and the
final soundings. It is apparent that subsidence and radiation dominate in the upper part of
these sounding, but turbulence becomes more important near the ground.
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Fig. 3.10  (a) Temperature profiles measured by high resolution
rawinsonde soundings launched near Canton, Oklahoma on 18
June 1983 during the BLX 83 field experiment. The circles show
data from the 2100 CDT lauch. Squares show those of the 2230
CDT launch. (b) Contributions of turbulence (shaded lines),
radiation (dotted line), and subsidence (solid lines) to the cooling
rate are modeled for that 1.5 hour period. The two shaded and
two solid lines show the range of the respective contributions
during the period (Carlson and Stull, 1986).
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Fig. 3.11 Temperature budgets at t=18 h and t=02 h during Night 33-34
of Wangara: R= radiative transfer; T= turbulent transport
l; (André, et al., 1978).
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Fig. 3.12  Modeled (left) and observed (right) profiles of mean horizontal
wind speed during Night 33-34 of Wangara (André, et al. 1978)
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Although there were no latent heating effects during this time period, advection might
be important. There were insufficient measurements to calculate the advective
contributions to temperature change on this night. Instead, it is left as an exercise for the
reader to "back out" the advective contribution, given the data in Fig 3.10.

André, et al. (1978) made a similar analysis of the relative importance of terms in the
heat budget equation. Fig 3.11 shows that radiation played a much larger role for the
Wangara SBL just after sunset, but that turbulence just above the ground increased in
importance later in the night.

Wind speeds (Fig 3.12) observed at night in the Wangara field experiment showed the
characteristic nocturnal jet with peak wind speed of about 14 m/s at 200 m above the
ground. The simulated profiles shown in the same figure demonstrate the difficulty of
forecasting winds at night. Nevertheless, the simulated wind profiles are useful in
studying the relative importance of terms in the momentum budget equations (3.5.3 ¢ and
d). For this particular case, Fig 3.13 shows that the Coriolis terms were much more
important in causing accelerations than were the turbulence effects.



GOVERNING EQUATIONS FOR TURBULENT FLOW

105

[

%

Acceleration (10*ms™)

-2

o

Acceleration (10 *ms™?)

(b)

1200

z(m)

800

400

Fig. 3.13

t=18 h

0

1

M

I
-2

Acceleration (10 *ms’?)

[

2

z(m)

1200

800

Night

1 hk“*w

Eastward (a) and northward (b) wind budgets att=18 h and t=02 h
during Night 33-34 of Wangara: C, Coriolis effect: T, turbulent
transport (André, et al., 1978).

-2 0

Acceleration (10"°mg™?)




110  BOUNDARY LAYER METEOROLOGY

3.7 References

André, J.-C., G. De Moor, P. Lacarrére, G. Therry, and R. du Vachat, 1978: Modeling
the 24-hour evolution of the mean and turbulent structure of the planetary boundary
layer. J. Amos. Sci., 35, 1861-1883.

Businger, J.A., 1982: Equations and concepts. Chapt. 1 in Atmospheric Turbulence
and Air Pollution Modelling, Nieuwstadt and van Dop (Editors). Reidel. 358pp.

Carlson, M.A. and R.B. Stull, 1986: Subsidence in the nocturnal boundary layer. J.
Climate and Appl. Meteor., 25, 1088-1099.

Clarke, R.H., A.J. Dyer, R.R. Brook, D.G. Reid, and A.J. Troup, 1971: The Wangara
Experiment: Boundary Layer Data. Div. of Meteor. Physics Tech. Paper No. 19.
Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia.
341pp.

Crum, T.D., R.B. Stull, and E.W. Eloranta, 1987: Coincident lidar and aircraft
observations of entrainment into thermals and mixed layers. J. Climate and Appl.
Meteor., 26, 774-788.

Mahrt, L., 1986: On the shallow motion approximations. J. Ammos. Sci., 43, 1036-
1044,

Stull, R.B. and E.W. Eloranta, 1984: Boundary layer experiment - 1983. Bull. Am.
Meteor. Soc., 65, 450-456.



GOVERNING EQUATIONS FOR TURBULENT FLOW 111

3.8 Exercises

1) Suppose that there is an air pollutant called gallacticum that is found within long,
narrow spaceships. This pollutant decomposes faster in warmer air than in cooler air.
Hence, the conservation equation for gallacticum is

dc
— = .acT
I ac

where ¢ is the concentration of gallacticum, a is a constant, T is the absolute air
temperature, and t is time.

Derive the prognostic equation for the mean concentration of gallacticum that
applies to turbulent flow within the space ship. You can scale your equations to the
space ship by assuming that, within the region of interest, the on ly mean wind is the

forced ventilation current, U , down the length of the space ship (in the x-direction).
There is, however, horizontal homogeneity of mean quantities in the x-direction only.
Be sure to put the turbulence term(s) into flux form.

2) Why is an understanding of turbulence necessary for studying and modeling the
boundary layer?

3) Expand the following term, and describe its physical meaning.

_ odu.'u'
i
ik axk

4) List the steps, assumptions, simplifications and substitutions (in their proper order)
used to get the following equation from (3.2.3b). Do NOT do the whole derivation,
just list the steps.

oU o T, OuWwW
A

5) Very briefly define the following, and comment or give examples of their use in
micrometeorology:

a) kinematic heat flux
b) Reynolds stress
¢) horizontal homogeneity
d) Boussinesq approximation
6) The forecast equation for mean wind in a turbulent flow is:

0,5 (o T . 19P U, 9w
—_— . = - Q. + .. P _— -
ot i axj i3 8 e &3 v Eaxi TV asz axj
A B C D E F G

a) Name each term, and give its physical interpretation,
b) Starting with the equation above, derive the equation for 9V/ot assuming U = 0.
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7) Given the nighttime data of Fig 3.10, estimate the vertical profile of temperature change
associated with the advective contribution between 2100 and 2230 CDT.
8) Suppose that the boundary layer warms by 10 °C during a 6 h period. If:

dw'e’ - Wrermp ) w‘elbottom
dz Ziop ~ “bottom
a) then what is the average value of turbulent heat flux at the earth's surface fora 1 km
thick BL having no heat flux at its top?
b) I u. = 0.2 m/s, then find 6,°".
9) Suppose that:

u'w'=-(ux+c¢ z)2 , v'w' = Qforall z, -Ijg = 5 m/s at all heights, T’g =5 m/s at
all heights, f,=10%s", u. =0.3 m/s, and ¢ = 0.001 s,
Find the acceleration of the air in the x-direction at a height of 100 m in the BL,

assuming that initially U =4 m/s and V =2 m/s at that height.

10) Given the term U 8\’2!87( , which represents the advection of mean horizontal v-

component of kinetic energy. Expand the variables U and V into mean and turbulent
parts, Reynolds average, and simplify as much as possible.

11) Show the steps necessary to put uj' BT'Z;‘axJ. into flux form.

12) Expand the following Coriolis term -2 € Qj U, for the case of i=1, in terms of

latitude, velocity, and rotation rate of the earth. Assume that there is no subsidence.
13) Given the profile of momentum flux, Az

—27z;

u'w’, sketched here, sketch a mean

wind profile between z=0 and z=2z; B |V

that could reasonably occur and be /

consistant with the momentum flux. .
Assume a slab-like mixed layer. 0 aw

14) Let C be the concentration of hockipuculis bacteria in the air. This contagious
bacteria, which sweeps across the northern states each winter, is known to increase as
ice forms on the lakes. Researchers at the Institute for Sieve Studies have discovered
the following conservation equation for hockipuculis in the air:

dC _aC

dt 9
where "a" is a constant. Find the conservation equation for C in a turbulent

atmosphere. Assume horizontal homogeneity and no subsidence.
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au. 3
15) Evaluate H=MN , where M = & va—x:i- and N=3§, 6".

16) A virulent gas called cyclonide has recently been detected near weathermap display
areas. Meteorologists who enhale this gas frequently become euphoric when
hurricanes, tornadoes, low-pressure systems, and other cyclones are being displayed
on the weather maps.

In your efforts to eliminate this scourge of the meteorological community, you
have discovered that cyclonide is neither created nor destroyed but is advected from
place to place. If some of this gas escapes into the turbulent boundary layer, you will
be asked to forecast its mean concentration. In anticipation of this request, derive the
prognostic equation for mean cyclonide concentration. State any assumptions made.

17) Given a kinematic heat flux of 0.2 K m/s at the ground, and a flux of -0.1 K m/s at the
top of a 1 km thick mixed layer, calculate the average warming rate of the mixed layer.

18) Expand the following, and eliminate all terms that are zero:

o( €kl U, U, 8 5]'1)
ox,

m

19) A consortium of personal computer manufacturers has contracted with a local genetic
engineering firm to create a new virus call RFV. When humans breath this virus, it
causes Ramchip Fever. Symptoms include: an insatiable urge to buy a computer,
keyboard finger twitch, memory overflow, a love for mouses, and severe joystick
spasms. Parents who breath RFV develop a guilt complex that their offspring will
flunk out of school unless they buy a computer.

The concentration, ¢, of RFV in the air is governed by the following conservation
equation:

dc 2
—= T
" ac

where "a" is a constant and T is absolute temperature.

a) Derive the forecast equation for C in turbulent air. Put it into flux form.
b) Scale the answer by assuming horizontal homo geneity and no subsidence.

20) Starting with (3.2.4b), derive a forecast equation for q in turbulent flow. That is,

derive an equation like (3.4.4b), except for water vapor only. State all assumptions
and simplifications used.

21) If a volume of boundary layer air initially contains 2 g/kg of liquid water droplets, and

these droplets completely evaporate during 15 minutes, then find dq/dt and 06/dt

associated with this evaporation. What is the value (with its units) of E, in (3.2.4b)
and (3.2.5)?
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22) Given typical values for atmospheric air density near sea level, find:

a) pg in units of (mb/m), and in units of (kPa/m) [useful for converting between
pressure and height coordinates].

b) p Cp in units of (mb/ K), and in units of (kPa/K). State all assumptions used.

23) Given typical mean air densities and virtual potential temperatures at sea level in the
boundary layer:

a) Find the density fluctuation, p', that corresponds to an air parcel with 8,' = + 2 C.

b) Find the vertical acceleration of that air parcel, neglecting pressure and viscous
effects.

¢) Find the pressure fluctuadon, p', if the parcel is restrained from accelerating
(neglect viscous effects).

24) What magnitude of V-component geostrophic departure (deviation of the actual wind
from its geostrophic value) is necessary to cause the U-component of wind to
accelerate 5m/s in one hour?  State all assumptions.

25) Use current weather maps (analyses and/or forecasts) to evaluate terms I through IV
in (3.3.4) for any one location of interest such as the town you are in. Do it for low
level (BL) data for any one variable such as potential temperature or humidity.
Compare and discuss the magnitudes of these terms.

26)Givenu'w'=-0.3 m? 52, find the value of the Reynolds stress in units of N-m=2.

27) Look up the value for thermal diffusivity, vg, for air at sea level. Given this value,
what curvature in the mean temperature profile would be necessary to cause a warming
rate of 5 K/hr? Where, if anywhere, would such curvatures be expected to be found
in the boundary layer?

28)Given equations (3.5.3), list all of the necessary initial and boundary conditions

necessary to solve those equations for 8, g, U and V.
29) a) Determine the warming rate in the mixed layer, given the soundings of Fig 3.5.
b) Using the heat flux data of Fig 3.2, what percentage of the warming rate from
part (a) can be explained by the turbulent flux divergence term?
¢) Suggest physical mechanisms to explain the remaining percentages of warming,
30) Same as question (30), except for moisture using Figs 3.6 and 3.2.



