In the previous chapter, we summarized the equations needed to forecast mean wind,
temperature, humidity, and pollutants. The last term in each of equations (3.5.3¢)

through (3.5.3g) contains a covariance like uj'B‘ or uj‘c‘. In order to use those

previous equations, we can cither evaluate the covariances experimentally, or we can
derive additional equations to forecast the covariances.

In this chapter, prognostic equations are derived for variances and covariances.
Variances give us information about turbulence energies and intensities, while covariances
describe kinematic turbulent fluxes. While the previous chapter dealt primarily with the
mean state, this chapter deals with the turbulent state of the atmosphere.

4.1 Prognostic Equations for the Turbulent Departures

Turbulent departures of variables are the deviations from their respective means; i.e.,

0, u, v, w', q, and ¢'. In theory, prognostic equations for these departures could be
used to forecast each individual gust, given accurate initial and boundary conditions for
the gust. Unfortunately, the time span over which such a forecast is likely to be accurate
is proportional to the lifetime of the eddy itself — on the order of a few seconds for the
smallest eddy to about 15 minutes for the larger thermals. For most meteorological
applications, such durations are too short to be of direct use. Instead, we will use the
prognostic equations derived in this section as an intermediate step towards finding
forecast equations for variances and covariances of the variables.
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4.1,1 Momentum

Start with the expanded version of the momentum conservation equation (3.4.3a),
rewritten here for convenience:

ou; o' __ 3T, Ua”ir , 9T , 9y’

1 p— 2-—- 2
9, _ . [P [1)ep 2T 3%y
-3,,8 + 8, (~B_—) g+ chij3Uj + fc.c:iﬁuj - (:)—— - (— i.i-\f +V—;

Next, from this equation for the total wind (ﬁi + 1), subtract the mean part (3.4.3¢), also
rewritten here:

U, _ U, _ ( 1 ) B 9T o@u)
— __i = -0 .. .- = — LI t
3t Uiae T %t el - (G e v o2 o

This leaves a prognostic equation for just the turbulent gust, u;"

du du/ 'BU; 'aui'
I TUE T Y e T

6. Nop %' @)
v v | =] 9P i i
+0, (—E)g + f;;eij3uj (p) —-—axi + vV ax? + 3 (4.1.1)

v

4.1.2 Moisture

To simplify future derivations, we will focus on just the vapor portion of the total
humidity. For specific humidity of water vapor, start with (3.4.4a), except replace every
occurrence of gy by g, and include the phase change term E (see 3.2.4b). For simplicity,
we will assume that body force terms Sqand E are mean terms only. The result is:

aa + uraql'

9q _ 9q' — 9q' 99’ _

— dg ,
o "o T Vit Yiag
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an2_a +V aqu + (Sq+E)

q =
asz- Bx? Pair

(4.1.2a)

Next, subtract the equation for the mean (3.4.4b), again replacing every gy with q:

G 9 o5 (S+E) @
%‘+U.§i=v§—§-+(q_ ). - (4.1.2b)
Toxi 95 Pair %;
leaving a prognostic equation for the perturbation part, q";
dq¢' — aq' aq oq’ 9%q 9 (u/q’)
_— — A" S — = 41.2
ot + U.F a}(j Y an uJ an Ve asz * an ( ©)

The reader is invited to derive the equations for the case where S, and E also have
perturbation components.

4.1.3 Heat

Start with (3.4.52) and subtract (3.4.5b) to leave

30 —38' .38 . .20 2% 2me) | aqQ
=— + U =+ u' =+ u'= =V + - 3 (413
o " E e T e T T T e, o @.1.3)
4.1.4 A Scalar Quantity
Start with (3.4.6a) and subtract (3.4.6b) to leave
' . ' Y& ' 2. a(ﬁ)
ok LT L2 4.1.4)

T TG T e T e T2 T ax,

4.2 Free Convection Scaling Variables

Before deriving equations for variances and fluxes, we must detour a bit to learn how
experimental data is scaled for presentation. We can then show case study examples of
data that correspond 10 the equations we develop.
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In Chapter 1, it was stated that turbulence can be produced by buoyant convective
processes (i.e., thermals of warm air rising) and by mechanical processes (i.e., wind
shear). Sometimes one process dominates. When buoyant convective processes
dominate, the boundary layer is said to be in a state of free convection. When
mechanical processes dominate, the boundary layer is in a state of forced convection.

Free convection occurs over land on clear sunny days with light or calm winds. Forced
convection occurs on overcast days with stron ger winds. In this section, we will focus on
free-convection scales; forced-convection scales have already been introduced in section
2.10.

For the free-convection case, strong solar heating at the surface creates a pronounced
diurnal cycle in turbulence and ML depth. In chapter 3, profiles of heat and moisture flux
were made nondimensional to remove these diurnal changes. The resulting profiles of
heat flux, for example, presented height in terms of a fraction of the total ML depth, and
presented flux values as a fraction of the surface flux values.

Such a scheme to remove nonstationary effects can be easily applied to other variables,
and is quite useful for studying the relative contributions of the various terms in the
variance and flux equations just presented. Some of the appropriate scaling variables for
free convection conditions are presented here. Appendix A lists a more complete
summary of scaling variables,

Length Scale: Thermals rise until they hit the stable layer capping the ML. As a
result, the thermal size scales to z,. Thermals are the dominant eddy in the convective
boundary layer, and all smaller eddies feed on the thermals for energy. Thus, we would
€xpect many turbulent processes to scale to z; in convective situations.

Velocity Scale: The strong diurnal cycle in solar heating creates a strong heat flux
into the air from the earth's surface. The buoyancy associated with this flux fuels the

thermals. We can define a buoyancy flux as (g/ﬁ_v) w'e "

Although the surface buoyancy flux could be used directly as a scaling variable, it is
usually more convenient to generate a velocity scale instead, using the two variables we
know to be important in free convection: buoyancy flux at the surface, and z;.
Combining these yields a velocity scale known as the free convection scaling
velocity, w,, also sometimes called the eonvective velocity scale for short:

1/3

g Z. . ,
w, = —e'——I (“’ 0, Js (4.2a)

v

This scale appears to work quite well; for example, the magnitude of the vertical velocity
fluctuations in thermals is on the same order as W,. For deep MLs with vigorous heating

at the ground, w, can be on the order of 1 to 2 m/s. Fig 4.1 shows examples of the
diurnal variation of w,.
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Time Scale: The velocity and length scales can be combined to give the followin

free convection time scale, t,:
%
(4.2b)

This time scale is on the order of 5 to 15 minutes for many MLs. Observations sugges:
that this is roughly the time it takes for air in a thermal to cycle once between the bottom

and the top of the ML.
Temperature Scale: Using surface heat flux with W,, we can define a temperature

scale for the mixed layer, B*ML, by:
(+e)
420

This scale is on the order of 0.01 to 0.3 K, which is roughly how much warmer thermals

are than their environment,
Humidity Scale: Surface moisture flux and w, can be combined to define a mixed

layer humidity scale, q_ML:
(70)
= (4.2d)

q =
* w
*

) and scale well to moisture

Magnitudes are on the order of 0.01 to 0.5 Ewater K&

excesses within thermals,
With these convective scales in mind, we can return to the equation derivations.

4.3 Prognostic Equations for Variances

4.3.1 Momentum Variance
Basic Derivation. Start with (4.1.1) and multiply by 2ui":
aui'

2 L} Iaﬁi 2 t, 1
+ uiuj —axj + uiuj ——-axj =

, aui' — i
1 2 1 _I‘__|
k p a i 1 axz 1 BXJ

g + 2fgu'u

v

6,/

+ 26i3ui’ L
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Next, use the product rule of calculus to convert terms like 2u;'du;/dt into A(u))%/at:

2
; ) aui'
— 4+ U —— + 2u'u=—* + u =
X, X. i

ox.
i

8. ' ' o%u. 9 (u.'u.")
+28.u | =g + 2feunn’ - 2| = %’ +2vu —— + 2u' ————
3% L&Y 5 ) 3x, i "2 i ox,

e i axj i

v

For step three, average the whole equation and apply Reynolds averaging rules:

8ui‘2 — Bui'2 ‘ aﬁi aui'z
T+bja—)(j+2uiuja—xi+uj a){j =

ev'\ R u' ' %u.' o (u.'u)
+2 5i3ui' (—'_'." g+ 21::8.1.3ui‘u,’ - 2( —1') ai + 2v ui' 1 + 21]; —_—td
Gu) ’ ’ p axi axf OX;

where the last term is zero because I =0. If we multiply the turbulent continuity

equation by u;? and Reynolds average to get ui‘2 auj';‘axj = 0, then we can add this

equation to the equation above to put the last term before the equal sign into flux form:

a(uj' ui'z)faxj . This leaves:

28.u. o 2 e - 2 ) op! R
+20,,u, 8_ g + 2fguu’ - S +2vu, 5 (4.3.1a)
v an

This general form of the prognostic equation for the variance of wind speed, ui‘2 , is

usually simplified further before being used for boundary layer flows.
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Dissipation. Consider a term of the form az(ui‘z)fax?‘ Using simple rules of

calculus, we can rewrite it as:

az(u.'z) 2 3% 2 ‘ Sui' u, du/ 82u{'
R 1 = — Zui W = Qe 5 + Zui' 3 =
asz aXJ aXJ aXJ j aX X_] a

i 2
ox.
j

If we multiply the last term above by v, then it would be identical to the last term in
(4.3.1a). Thus, we can write the last term in (4.3.1a) as

> (4.3.1b)

_ —_— - 2
3% az{u.'z) (Bui'\
' ! v L . 2v

axj

2vu, =
1 aX§ axj)

The first term on the right, which physically represents the molecular diffusion of
velocity variance, contains the curvature of a variance. The variance changes fairly
smoothly with distance within the boundary layer, its curvature being on the order of 10°¢
s2 in the ML to 102 s2in the SL. When multiplied by v, the first term ranges in
magnitude between 10! and 107 m?s3.

The last term on the right can be much larger. For example, if the eddy velocity
changes by only 0.1 m/s across a very small size eddy (for example, 1 cm in diameter),
then the instantaneous shear across that eddy is 10 s1.  For smaller size eddies, the shear
is larger. When this value is squared, averaged, and multiplied by 2v, the magnitudes
observed in the turbulent boundary layer range between about 10% and 107 m? 573,
Typical values in the ML are on the order of 10 to 10> m? 573, while in the surface

layer, values on the order of 102 m? s> can be found. Thus, we can neglect the first
term on the right and use:

(4.3.1c)

[
<
=
(s B}
)
s
i
1]
[
<
TS
o3}
%) 2
‘-._.__\__u_._.‘J

The viscous dissipation, € , is defined as:
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Bui' g
e =+v|{g (4.3.1d)

It is obvious that this term is always positive, because it is a squared quantity. Therefore,
when used in (4.3.1a) with the negative sign as required by (4.3.1c), it is always causing
a decrease in the variance with time. That is, if is always a loss term. 1n addition, it
becomes larger in magnitude as the eddy size becomes smaller. For these small eddies,
the eddy motions are rapidly damped by viscosity and irreversibly converted into heat,
[This heating rate is so small, however, that it has been neglected in the heat conservation
equation (3.4.5b).]

Pressure Perturbations. Using the product rule of calculus again, the pressure

term -2 (ui'}E) ap'faxi in (4.3.1a) can be rewritten as

u) ap (_z_)af@ (y_) oui
'Z(BJTf‘ o) AR

1

The last term is called the pressure redistribution term. The factor in square
brackets consists of the sum of three terms: Ju'/dx, dv'/dy, and dw'/dz. These terms
sum to zero because of the turbulence continuity equation (3.4.2¢); hence, the last term in
the equation above does not change the total variance (by total variance we mean the sum
of all three variance components). But it does tend to take energy out of the components
having the most energy and put it into components with less energy. Thus it makes the
turbulence more isotropic, and is also known as the return-io-isotropy term.

Terms like du'/ox are larger for the smaller size eddies. Thus, we would expect that
smaller size eddies are more isotropic than larger ones. As we shall see later, this is
indeed the case in the boundary layer.

The end result of this analysis is that:

5} op: (g_} 3 (u;p)
-2(?}—81'1— = - 'F; '—"a—Xl—- (4.3‘16)

Coriolis Term. The Coriolis term chEijB ui'uj' is identically zero for velocity

variances, as can be seen by performing the sums implied by the repeated indices:
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2f G u.'u’ = 2f‘:(-:213 uz'ul’ + che

=0 (4.3.1)

because u,'u,’ = u,'u,’ (see section 2.9.2). Many of the terms in the above sum were

not written out because the alternating unit tensor forced them to zero.
Physically, this means that Coriolis force can not generate turbulent kinetic energy.

Kinetic energy enters the picture because the variance u," is nothing more than twice the

turbulence kinetic energy per unit mass. The Coriolis term merely redistributes energy
from one horizontal direction to another. Furthermore, the magnitude of the redistribution

term  2f; u,'u,’ is about three orders of magnitude smaller than the other terms in
(4.3.1a). For that reason, the Coriolis terms are usually neglected in the turbulence
variance and covariance equations, even for the cases where they are not identically zero.

Simplified Velocity Variance Budget Equations. Inserting the simplifications
of the previous subsections in equation (4.3.1a) and rearranging the terms gives:

2 2 — 2
du.' __ou. g(u.'8.") oU, d@u'u') 2 du'p)
1 + U, ! = +28. + - 2u.'ut LI 3 1 - . - 2e
at i axj 3 0, 17 axj axj P ox,
(4.3.1g)
I II 1 v \" VI VII

TermI  represents local storage of variance.

TermII  describes the advection of variance by the mean wind.

Term Il is a production or loss term, depending on whether the buoyancy flux
w'8 ' is positive (e.g., daytime over land) or negative (e. g., night

over land).

TermIV  is a production term. The momentum flux ui'uj' is usually negative

in the boundary layer because the momentum of the wind is lost
downward to the ground; thus, it results in a positive contribution to
variance when multiplied by a negative sign.
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Fig. 4.2

Term V

Term VI

o1 0z 03 Gé 05 06 o

w2 /w2

(a) Variation of vertical velocity variance, w'2 with height, z during
with respect to the average mixed
layer depth, z;, while variance is normalized by the convective
velocity scale, w.. Range of measured and modeled values are
shaded, with a simple empirical approximation given by the solid

line. (b) Range of the ratio of the vertical velocity variance to the

eddy kinetic energy, €. Based on data from Deardorff (1974),

Lenschow, et al. {1980), André et al. {1978), Therry and Lacarrere
(1983), and Smedman and Hgstrém {1983).

daytime. Height is normaliz

. . i 2 .
is a turbulent transport term. It describes how variance u.” is moved

around by the turbulent eddies uj'.

describes how variance is redistributed by pressure perturbations.
It is often associated with oscillations in the air (i.e., buoyancy or

gravity waves).

Term VII represents the viscous dissipation of velocity variance.

We can also examine the prognostic equations for each individual component of
velocity variance if we relax slightly the summation requirement associated with repeated
indices. For example, in the above equation, we could let i=2 to write the forecast

) 2
equation for v' .

Any other repeated indices, such as j, continue to imply a sum. When

we perform such a split, remembering to reinsert the return-to-isotropy terms (because for
any one component, it is nonzero), we find:

ou” W T Bu'z _
ot i 8xj -

R § (uj'u‘z)

1

g 2
- 2u llj a—xj aX3 F

(4.3.1h)




126 BOUNDARY LAYER METEOROLOGY

T T T T T T T T T T T 7T (b) 1
Night |
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w'2(10'3m232) \lmr‘zfu.2

(a) Modeled profiles of vertical velocity variance during Night
33-34 of Wangara: == t=18 h; mew= t=21 h; s, $=03 h; -»ss-,
=07 h. Abscissa changes from linear to logarithmic at 10. (b)
Range of Vertical veloci%variance. w2, normalized by friction
velocity, u.,plofted as a function of hef#‘ht. Z, normalized by a
measure of stable boundary layer depth, h. Based on data from
André et al. (1978) and Caughey, et al. (1978),

2 2 — 2 o 12
a¢2+Ua¢2h _2__‘_Ia_V_B(ujv)-ia(v;p‘).*_——p‘i-zvév_
o i ox - I ox, oX, p oy 7 oy ox;
(4.3.11)

2 2 g 3 EVIREY
aw?  —ow? 2g(w'0)) oW ou'w”) - oW 2p ow aw)
+U. = Y. w— = vl s
a  i7ax A kN 5z T oz 2|y

1 v j i
4.3.1.j)
I II I v v VI VI VII

Terms I through VII have the same meaning as before. Term VIII represents pressure
redistribution, which is associated with the retumn-to-isotropy term,

Case Study Examples. Budget study is the name given to an evaluation of the
contributions of each term in prognostic equations such as the ones just derived. Some
terms are very difficult to measure in field experiments, which is why computer simulation
efforts are made. In the budget studies that follow, field data and numerical simulations
are combined, and the range of values is indicated. In most cases, field measurements
have significantly more scatter than the simulations.
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Meutral Neutral Meutral

u? / u? v2/ u? w2/ u2

Normalized velocity variance verses height in statically neutral
conditions, where h (=2km) is the height wherev is zero. Based
on a large-eddy simulation b‘f Mason and Thomson (1987) using
ug=10mvs, vg=0, and u«= 0.4 m/'s.

Fig 4.2 shows that vertical velocity variance during the daytime is small near the
surface, increases to a maximum about a third of the distance from the ground to the top of
the ML, and then decreases with height. This is related to the vertical acceleration
experienced by thermals during their initial rise, which is reduced by dilution with
environmental air, by drag, and by the warming and stabilizing of the environment near
the top of the ML, In cloud-free conditions with light winds, glider pilots and birds
would expect to find the maximum lift at z/z, =0.3 .

At night, turbulence rapidly decreases over the residual layer, leaving a much thinner
layer of turbulent air near the ground, as is shown in Fig 4.3, The depth of this turbulent

SBL is often relatively small (h = 200 m). In statically neutral conditions the variances
also decrease with height from large values at the surface, as shown in Fig 4.4 (Mason

and Thompson, 1987); however, the depth scale is much larger (h = 2 km).

Fig 4.5 shows that the horizontal components are often largest near the ground during
the day, associated with the strong wind shears in the surface layer. The horizontal
variance is roughly constant throughout the ML, but decreases with height above the ML
top. At night, the horizontal variance decreases rapidly with height to near zero at the top
of the SBL (Fig 4.6). This shape is similar to that of the vertical velocity variance.

The budget term discussion for velocity variance will be deferred to Chapter 5 because
of the close association of velocity variance with turbulent kinetic energy.
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0.1 02 03 04 05
2 2 —Z 2
ut/w, _ utiw,

(a) Range of horizontal velogity variance, u' normalized by the

convective velocity scale,w 2, as a function of dimensionless height

2/z; , for typical conditions with combined convection and wind

shear. (g Idealized range for free convection with no mean shear.

Based on data from Smedman and Hogstrom (1983), Deardorff
(1974), André et al. (1978), and Lenschow et al. (1980).
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Fig. 4.6 (a) Modeled profiles of horizontal eddy kinetic energy during Night
33-34 of Wangara; === {<=18 h; === {=21 h; wenn =03 h; == | =07

h. Abscissa changes from linear to logarithmic at 10. (b) Range of
horizontal velocity variance, u3 normalized by friction velocity, U.,
Egmed as a function of height, 2, normalized by a measure of stable

undary layer depth, h. Based on data from André, et al. (1978) and
Caughey, et al. (1979).
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4.3.2 Moisture Variance

Budget Equation. In the following development, only the vapor part of the specific
humidity will be used, although similar derivations could be performed for the nonvapor
part too. Start with (4.1.2¢c), multiply by 2q', and use the product rule of calculus to=

convert terms like 2q' 9q}/dt into terms like 3(q)/0t , to yield:

2 2 - 2 2 —
99”  —3q L. . .oq” _, . dq 00
5 +Uiax. +2qujg+uj ax.—2qvqaz+2q "y
j ] j X; ]
Next, average and apply Reynolds averaging rules:
2 2 — 2 2
3~ 99 —— 09 09" _, . 949
IR R e A )
] i i X

To change this into flux form, add the averaged turbulent continuity equation multiplied by

q? (ie., add q'2 du;/9x; =0), and rearrange slightly:

2 3 — 112 2
3q°  —dq¢” . ——dq 9@ g
et U =AY e Tk TN

k] ] j] Xj

As was done for momentum, the last term is split into two parts, one of which (the
molecular diffusion of specific humidity variance) is small enough to be neglected. The

Fig. 4.7
Modeled vertical 1.0
profiles of

dimensioniess z
specific-humidity z
variance for Day

33, Wangara.

Based on data 0.5
from Deardorif

(1974) and

Lenschow, et al.,

(1980).
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aﬁ B Day —

Turbulent PTed"" v 7
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- Term Vi
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Dimensionless Terms in Moisture Variance Budget i

Fig. 4.8 Modeled vertical profiles of terms in the specific-humidity variance
equation [see equation (4.3.2)] made dimensionless by dividing by
w_(qM)2/ z, for Wangara, Day 33, hour 14.1. Abscissa chapges from

| finear to logarithmic at= 10. w 5 = 2.04 m/s, G, = 1.3 x 10° g/g, and

z;= 1305 m. The thickness of the curves is meant to su%gest some

uncertainty in the precise values. Based on data from Deardorff )
(1974) and Lenschow, et al. (1880).

remaining part is defined as twice the molecular dissipation term, €, by analogy with

momenturm;
2
dq’
gq = Vg axj

Thus, the prognostic equation for specific humidity variance 1s

oq' = a;i — aﬁ 0 (uj‘q'z)
t * Ui ij =-2q Y; E‘TJ i ij - 25 (4.3.2)
I I v v VII

TermI  represents local storage of humidity variance

Term I  describes the advection of humidity variance by the mean wind

Term IV is a production term, associated with turbulent motions occurring
within a mean moisture gradient

TermV  represents the turbulent transport of humidity variance

Term VII is the molecular dissipation.
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Case Study Examples. Fig 4.7 shows that humidity variance is small near the
ground, because thermals have nearly the same humidity as their environment. At the top
of the ML, however, drier air from aloft is being entrained down between the moist
thermals, creating large humidity variances. Part of this variance might be associated.,
with the excitation of gravity/buoyancy waves by the penetrative convection.

Fig 4.8 shows production terms balancing loss terms in the budget, assuming a steady
state situation where storage and mean advection are neglected. Notice that the transport
terms (found as a residual) are positive in the bottom half of the ML, but are negative in
the top half. The integrated effects of these terms are zero. Such is the case for most
transport terms — they merely move moisture variance from one part of the ML (where
there is excess production) to another part (where there is excess dissipation), leaving
zero net effect when averaged over the whole ML,

4.3.3 Heat (Potential Temperature Variance)

Budget Equations. As was done with the moisture equation, start with (4.1.3),

multiply by 20', use the product rule of calculus, Reynolds average, put into flux form,
neglect molecular diffusion but retain the molecular dissipation, and rearrange to yield:

2 ) - 2 —
a8’ 207 —— 90  9ue") =_2_\ ,oQ’
T T UiE TN R T T T B |G 0
i ] ] i)
(4.3.3)
I I v A% VI VI

The terms above have physical representations analogous to those in (4.3.2). Term
VIIL s the radiation destruction term (sometimes given the symbol gg). Itisdifficult to

Fig. 4.9
Modeled vertical

profiles of

dimensionless virtual
potential temperature %
variance for Day 33, zZ,
Wangara. Abscissa
changes from linear to
logarithmic at 10.

Based on data from
Deardorff (1974)

André, et al.,(1978),
Lenschow, et al. - -
(1980}, and Smedman 0

and Hogstrém (1983). ° 5 10 — 20 30 40 50
/62
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measure this term directly, but sometimes it is modeled as e = (0.036 m/s)-€ 8 /e
where &g is about 1% to 10% of £g (Coantic and Simonin, 1984).

Case Study Examples. The temperature variance at the top of the ML (Fig 4.9) is
similar to humidity variance, because of the contrast between warmer entrained air and the
cooler overshooting thermals. Gravity waves may also contribute to the variance, There
is a greater difference near the bottom of the ML, however, because warm thermals in a
cooler environment enhance the magnitude of the variance there. At night, Fig 4.10
shows that the largest temperature fluctuations are near the ground in the NBL, with
weaker, sporadic turbulence in the RL aloft.

Fig 4.11 shows the contributions to the heat budget during daytime, again neglecting
storage and advection. The radiation destruction term is small, but definitely nonzero.
The dissipation is largest near the ground, as is the turbulent transport of temperature
variance. Fig 4.12 shows the corresponding budget terms at night.

FT T irry T T T 1T
Night

PRI 0 o
5 10 2

0%(10°K?)

Fig. 4.10 (a) Modeled profiles of virtual %tenttal temperature variance during
ight 33-34 of Wangara: symbols as in Fig. 4.3(a). Abscissa
changes from linear to logarithmic at 10. (b) Range of temperature
variance, g2 normalized by surface layer temperature scale, o
glorted as a function of height normalized by boundary layer g
ased on data from André, et al. (1978) and Caughey eta (1 79)
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Fig. 4.11 Modeled vertical profiles of terms in the virtual potential temperature
variance budget equation made dimensionless by dividing
by w, (8¥2/z For Day 33, Wangara, hour 14.1. Thickness of lines
denotes uncer'taint)/( or variability in the precisevalues.Based on data
from Deardorff (1974), Lenschow et al. (1980}, Andre et al. {1978),
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Fig. 4.12 Modeled budgets of virtual potential temperature variance at t=18 h
during Night 33-34, Wangara. After André et al. (1978).
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4.3.4 A Scalar Quantity (Tracer Concentration Variance)

Analogous with the moisture equation, start with (4.1.4), multiply by 2¢', use the
product rule of calculus, Reynolds average, put into flux form, neglect molecular
diffusion but retain the molecular dissipation, and rearrange to yield:

2 3 — 12
dc'”  — dc' —oC 9w
T UJ _aXJ = -2c Llj -a—x;- - —aXJ - 28‘: (434)
I II v v VI

The terms above have physical representations analogous to those in (4.3.2).
No case study examples are shown for tracer variances because they vary so widely
from constituent to constituent,

4.4 Prognostic Equations for Turbulent Fluxes

The equations of section 3.5.3 contain divergence terms of turbulent fluxes (c.g.,

i
prognostic equanons for thc fluxes can be found, one hopes that there will be as many
equations as unknowns, allowing determination of the boundary layer wind and’
turbulence state. In this section, we will derive equations for the unknown fluxes:
unfortunately, these new equations will contain additional new unknowns.

ui‘u.', uj’G', u, 'q’, and u, u.’c’). These fluxes are unknowns in equations (3.5.3). If

4.4.1 Momentum Flux

Budget Equations. Two perturbation equations are combined to produce flux
equations. To obtain the first equation, start with (4.1.1), multiply it by uy' , and
Reynolds average:

" Bui' __du/’ aﬁi aui'
r— + 1, U— +u'n'— 4 uw'nu'—2 -
k" iax. k7 ax x Jax

J

8, u '\ op’ o’u.
+ 8, u' ejg+f8u3k;‘ pgntvkg
]

v

For the second equation, interchange the iand k indices (i.e., replace each occurrence of
i with k, and each occurrence of k with i). Such an interchange will not change the
meaning of the equation, because summed terms will continue to be summed, and
unsummed terms will continue to represent the three components. The result is:
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Fig. 4.13 (a) Modeled profiles of vertical turbulent flux of u-wind component
during Day 33, Wangara. (b) Modeled profiles of vertical turbulent
flux of northward wind component during Day 33, Wangara. After

André et al., (1978).

Next, add these two equations together, and use the product rule of calculus to

produce combinations like u'du /ot + u ' ou/ot = 9(u;'u,)/dt:

T 1 T T d T T7 T 1 O e '
Buiu Ujauiuk ‘ raUk — dU, u/duuy \

k i
+ +u.'u. +u 0 L = .
ot dxj v ax k7 ax ax, k3 i Jg+8t3 k

fe  THT 4 f e k)9 N .azui‘
T L& WY Eijz uu’ i P ax vu vy g
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The turbulent continuity equation multiplied by u;'y " and averaged (u/u,’ Euj /o X = 0)

can be added to the last term before the equal sign to put it into flux form,
Each pressure term can be rewritten using the product rule of calculus, as shown in the

following example: u, ' dp/0x. = d(p'u,)/ox. - p'ou, /ox. Also, the viscosity terms
k i k i k i

can be rearranged using the product rule (left as an exercise to the reader). The final form
for the momentum flux budget equation is:

8(“;‘:%;) . ﬁja(au;;“k') _ ﬁ(u,’u ,) BUk _(u ’u.') an a[ui'uj'uk‘)

=

II I m v

g 1 ' t I I
+ (_) [SB w8 + 8, u, Gv} + fc[ekj3 U g uy uj]

0,
v \4 VI Vi
SECYEGN (a_a) A5 2oy
P ox, * 0x, " P ox, ox, v ax? . axj2
VI VII VIII IXJ X
(4.4.1a)

TermI  Storage of momentum flux ule .

TermII  Advection of momentum flux by the mean wind.

Terms Il Production of momentum flux by the mean wind shears,

Term IV Transport of momentum flux by turbulent motions (turbulent diffusion)

TermV  Buoyant production or consumption.

Term VI Coriolis effects.

Term VII Transport by the pressure correlation term (pressure diffusion).

Term VIII Redistribution by the retumn-to-isotropy term (named by analogy with
the velocity variance equation).

Term IX  Molecular diffusion of turbulent momentum flux.

Term X Viscous dissipation term (named by analogy with the velocity variance

equation). This term is often abbreviated by the symbol 28‘-‘i“k'

Scaling arguments, based on observations of the magnitudes of the terms in the above
equation, suggest that terms VI, VII, and IX are smaller than the rest, leaving:

p
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Normalized stress vs.
height in statically
neutral conditions,
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height where V is zero.
Based on large eddy
simulation by Mason
and Thomson (1987)
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g p' du, du
+18, [616 u'e + 8, uk‘ev‘} + =3t ox, |~ gy, (4:410)
v v Vi X

Each term in the equation above contains unrepeated i and k indices. Remembering
that i and k can each take on three values, that means (4.4.1a or b) represents 9 separate
equations. Thus, the above equations can be used to forecast each of the nine terms in the
Reynolds stress tensor, although as stated in Chapt. 2 the number of independent terms is
reduced to 6 by symmetries.

As an example of an application of this equation for one term, choose a coordinate
system aligned with the mean wind. Neglect subsidence and assume horizontal

homogeneity. The u'w’ component (i=1, k=3) of (4.4.1b) is thus:

(o) _ whn  A5ww) gu'd,’ p-(au' N Bw')
& ) "

oz ox

dz 0z 9 P

(4.4.1¢)
In general, the molecular (viscous) dissipation terms for the variance and covariance

(flux) equations are abbreviated as 28 .where £ represents the variance or covariance.
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Fig. 4.15  (a) Modeled profiles of turbulent flux of u-wind during Night 33-34,
Wangara: symbols same as in Fig. 4.3(a). (b) Range of

momentum flux normalized by the friction velocity versus height
scaled by boundary layer depth. Based on data from André, et al.
(1978). and Caughey et al. (1979).

The only exception is the momentum variance equation (4.3.1g), where 2¢ without a
subscript is usually used.

Case Study Examples. Fig 4.13 shows vertical profiles of u'w' and v'w' for

daytime cases, while Fig 4.14 shows a neutral example. Nighttime fluxes (Fig 4.15) are
often much weaker than daytime fluxes, except near the ground where wind shear at ni ght
can maintain the turbulence intensity. The surface values of these fluxes are almost
always of the sign appropriate for bringing momentum down from aloft. For mid-latitude
situations with predominantly westerly flow that increases speed with hei ght in the surface

layer (i.e., U is positive), we find that the momentum flux (u'w’) is negative near the
ground. In Fig 4.15a, the surface flux is positive because the mean surface wind in from
the east (i.e., U is negative).

Fig 4.16 shows the contribution of many of the terms in (4.4.1b) to the overall

budgets of u'w ' (eastward momentum flux budget) and v'w' (northward momentum flux

budget). Again, steady state is assumed and mean advection is neglected. The resultin g
values of terms at any one height should thus sum to zero. Large values of many of the
terms are observed both at the top and the bottom of the ML, where the strongest mean
wind shears are found.
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Fig. 4.16  (a) Eastward momentum flux budget as modeled for Voves
experiment made dimensionless by dividing byw; / 2, : ( s ),
pressure effect; ( woccec), shear production; ( === buoyant
production; ( ss== ), turbulent transport; ( sss=es ), Coriolis effect. (b)
Dimensionless northward momentum flux budget as modeled for
Voves experiment. After Therry and Lacarrere (1983).

4.4.2 Moisture Flux

Budget Equations. As for momentum flux, the derivation combines two
perturbation equations to produce a flux equation.  For the first equation start with the
momentum perturbation equation (4.1.1), multiply it by the moisture perturbation q', and
Reynolds average:

Iaui' Ju.' ou. ou.'

qa_; iTox. I ox iox.

Similarly for the second equation, start with the moisture perturbation equation (4.1.2¢)
and multiply by uj’ and Reynolds average:
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Next, add these two equations, put the turbulent flux divergence term into flux form
using the turbulent continuity equation, and combine terms:

a(qu ) (q i ) To 9T, ___dq a(q'uj‘uil}

Jax AN T MY T T

T T T
qe\,\ — q ap au Iaq
+ 8., gv } g + fceijSujq - ? é— vg' g + vy, 2
i

Then, split the pressure term into two parts, and assume v =V, to combine the molecular

diffusion terms:
o) _a@w)  __au  __ & o Anw)
e . - qu axj TN T T e,
I I 11 X1 v
a6, cole ra)
+ 8,4 5 ISR PN O “\p ax, “Elj
v VI V11 VIII
vd qux) 5 duy (aq)
+ AV el v
x> ox; J{ 9%, (4.4.22)
]
X X

The terms in this equation have meanings analogous to those in the momentum flux
equation (4.4.1a), except for the additional term (XI), which is a production/loss term
related to the mean moisture gradient. Remember that an additional term must be added if
the body source is assumed to have perturbations too.

Substituting 25“1‘1 for the last term, and neglecting the Coriolis term, the pressure

diffusion term, and the molecular diffusion term leaves:

a(q“) 3w) & o(ayy)
Y % “iT‘ “i“ia%' a;j“'“

I I 1T XI v
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q'9, 1\|poq’
* 8 5 |8T\p)| o

v

} - ZEUiq (4.4.2b)

v Vil X

Terms I and II are the storage and advection, terms III, XI, and V relate to
production/consumption; term IV is turbulent transport; term VIII is redistribution; and
term X is the molecular destruction (dissipation) of turbulent moisture flux.

Physically, term V relates the correlation (covariance) between moisture and
temperature to the production of moisture flux. One would expect that warmer air rises
(3.3.3b); thus, if warmer air is also moister (i.e., a positive correlation), then the moist air
would probably rise, thereby contributing to the moisture flux.

Physically, term XI suggests production of moisture flux when there is a momentum
flux in a mean moisture gradient. The turbulent momentum flux implies a turbulent
movement of air. If that movement occurs across a mean moisture gradient, then moisture
fluctuation would be expected, as is suggested by analogy to Fig 2.13.

For the special case of vertical moisture flux (i=3) in a horizontally homogeneous
setting with no subsidence, (4.4.2b) reduces to:

ot oz

waz

I XI v v Vil X

Case Study Examples. The slope of the moisture flux curve in Fig 4.17 indicates
that dry air is being entrained at the top of the ML fast enough to reduce the mean ML

I 1600 Day ~
Fig. 4.17 RE—— i
Modeled profiles __ 1200 :
of turbulent [3 — ¢ -
humidity flux w L e
during Day 33, 600 / 7

§i  Wangara. After - Fi _
André et al., 7
(1978). 400~ £ 12 = Local -

L g Time -
er‘f 1 L
% 1 2 3 P 5
——f{4n5 -1
w'q' (10 (Gweter / Gair) S )
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Fig. 4.18 Range of vertical profiles of terms in the moisture flux budget
equation for Day 33 Wangara, made dimensionless by dividing
by wiq}'"/2, . Based on data from Deardorff (1974) and
Lenschow, et al. (1980).

humidity, in spite of evaporation from the surface. Fig 4.18 shows a moisture flux
budget, with the greatest production and loss values at the top of the ML for this case.
Measurements of some of the individual terms are also shown in that figure.

4.4.3 Heat Flux

Budget Equations. The heat flux derivation is similar to that of the moisture flux,

.
a[emi.} ) UaLe'uj'] B i a(e'uj.u;)
ot j ox, S i ox T U9k T ax

] ] ] ]
I 1l I XI v
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Fig. 4.18 (a) Modeled profiles of kinematic heat flux during Night 33-34,
Wangara: symbols as in Fig. 4.3(a); abscissa changes from
linear to logarithmic at-10. (b) Range of heat flux normalized by
its surface value versus height normalized by boundary layer
depth. Based on data from André, et al. (1978) and Caughey

etal. (1979).

Namely, we started with the velocity perturbation equation multiplied by €', and the
temperature perturbation equation multiplied by u;'. Both equations were Reynolds
averaged and summed. The turbulent continuity equation was used to put the turbulence
diffusion term into flux form.

The terms in this equation have analogous meanings as for the moisture flux equation

(4.4.2a). Often, term V is approximated by 05 g (Bv’z,f@_‘,). Term XII describes the

correlation berween velocity fluctuatons and with radiation fluctuations.
Substituting 2 €, for term X, and neglecting the Coriolis, pressure diffusion,
radiation, and the molecular diffusion terms for simplicity leaves:
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a(e:ui‘) _va(evui’) 5 a‘fj"i 20 B'uj’u )
7t Ut T %M YYNiw T T e
i i j i
I i I XI v
_
86, 1\{pog’
+ 8, 3 g+ 3 3= -281118 (4.4.3b)
A% VIO X

For the special case of vertical heat flux (i=3) in a horizontally homogeneous setting
with no subsidence, (4.4.3b) reduces to:

<o By D G N e B
. Xi IV v VIO X
(4.4.3¢)
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Dimensioniess Terms in Heat-Flux Budget

Fig. 4,20 Range of vertical profiles of terms in the heat flux budget equation for
Day 33 Wangara, made dimensioniess by dividing by w2eM-/z,.

Based on data from Deardorff (1974), Lenschow et al. [1980), André
et al. (1978), Therry and Lacarrere (1983) and Zhou et al. (1985).
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Case Study Examples. The linear decrease of heat flux with height has been
discussed in chapter 3 for the daytime cases (Figs 3.1-3.3 and 3.7). Nighttime heat flux
values are much weaker, as shown in Fig 4.19.

Fig 4.20 shows the steady-state, non-advective heat flux budget terms. Large values
of terms occur at the surface because of the strong turbulence and mean temperature
gradients there. In the middle of the ML, weak potential temperature gradients are
associated with smaller magnitudes of the terms there. At the top of the ML the terms
become large again, associated with the strong temperature contrast across the ML top.

4.4.4 Flux of a Scalar (Pollutant or Tracer Flux)

Using the same procedures as before, the pollutant flux budget equation is

(evy) _o(ewy) U, ot oeuu)
— Uia_xj =- ¢y a—x;- Uy a_xj - —a;j
I il I XI v
8, Ape) poc va’(cu ) u;') [ 9¢
#8355 e Le(TTT) - ( )[ < a,:] —2v(aJ (g{j‘)
J
v VI VoI  vo IX X
(4.4.43)

The terms in this equation have meanings analogous to those of the moisture flux equation
(4.4.2a). Substituting 2 Eue for the last term, and neglecting the Coriolis term, the
pressure diffusion term, and the molecular diffusion term leaves:

a(c’_ul') _a(c'_ui') ___ ou. oC a(c'uj'ui')
—+ U, -— =-cu, =—- v'u' — -~ 4
ot i axj i axj 17] ij axj
I I I XI v
!e ] !'l
PN B D U1 TS 4.4.4b)
i3 gv g p axi ujc (4.4.
A% VI X

For the special case of vertical pollutant flux (i=3) in a horizontally homogeneous
setting with no subsidence, (4.4.4b) reduces to:
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4.4.5 Buoyancy Flux
Both the definition of wx and the buoyant production term in equation (4.3.1j) contain

a buoyancy flux defined by (g/e_v) (w'8,",. The flux of virtual potential temperature

-\;:TV' is different than the heat flux w'8' — the two must not be interchanged. We
can, however, use the definition of virtual potential temperature to derive a diagnostic
equation for ;8_\: in terms of w'8".

Start with

8, =0 [1+06lr- 1] (4.4.52)

from section 1.5 (or Appendix D), where it is understood that r equals the saturation value
whenever rj_is nonzero. Expand the dependent variables into mean and turbulent parts:

B, + 8, = (6 + o) [1 so6i(F+ o) - (L fﬁﬂ
—5[1+061r-5 | +a [ 0.61r -1 +0'[1+0.617 - ] 4+ g [0.61r" - 1]

Multiply this equation by w' and Reynolds average

wo_ ' = 5[0.61(?)- (I»“rf)] s (wor)[1+0615 -5 ] + wolo6ir - ]
(4.4.5b)

The last terms are triple correlations (w'8'r" and w'G‘rL‘). Observations in the

atmosphere suggest that they are small enough compared to the other terms to be
neglected, although these estimates are difficult to measure and fraught with error. Thus,
the usual form for the virtual heat flux is:

we, ' = 5[0.61(?7‘] : (w‘r;ﬂ + (Wo)[1+0617 7] 4450
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For the special case of no liquid water in the air, this reduces to:

W, = (w‘e')[ 1+ 0617 + 0.618 (wT) (4.4.50)

"Modelers and theorists often have no recourse but to use this equation whenever
buoyancy flux is needed. Experimentalists, on the other hand, often have direct

observations of instantaneous values of € and r, enabling them to calculate 8, using
(4.4.53). Knowing ©,, itis easy to then find q and 9, as is done with any other

variable. The resulting flux found by forming the product of w'and 8, yields a more
accurate virtual potential temperature flux than (4.4.5¢c or d).
Case study examples for the buoyancy flux were shown in Figs 3.1-3.3.
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4.6 Exercises

1)} Confirm that -2 uj'q' aa;axj is a production term and not a loss term for equation

(4.3.2). Hint, review section 2.7 and Fig 2.13.
2) Given values for the viscous dis sipation rate of velocity variance (see section 4.3.1),

express that rate as a heating rate 98/0t for air, and compare its magnitude with the
magnitudes of other terms in (3.4.5b). Hint, remember that viscosity dissipates
turbulent motions into heat.

3) Given the general form for the momentum flux equation (4.4.1b), write out the
equations for the following components:

aAuw' by vw' cuv

4) Given the momentum flux equation (4.4.1b), show how to transform that equation

) . ) . 2
Into an equation for velocity variance u'

5) Show how the two viscosity terms in the equation just before (4.4.1a) can be

manipulated into the form shown in (4.4.1a). Hint, start with az(ui'uk‘)fasz .
6) a) Given the data from Figs 3.1-3.6 of chapter 3, calculate w, for each of the flights.
b) Also calculate t,, G,ML, and q ML

7) In Fig 3.1a of chapter 3 are plotted two data points at each height. One data point
represents heat flux and one represents moisture flux. Using the values from this

figure, calculate w'8 ' for each of those heights, and plot the result. Do NOT

normalize your results by the surface value.

8) Given Fig 4.13, calculate the value of ferms VI and IX of equation (4.4.1a). By
comparing these values with the magnitudes of the other terms, are we justified in
neglecting them to derive (4.4.1b)?

9) Some of the terms in (4.4.1a) involve correlations with pressure perturbation. Discuss
how you would design an instrument for measuring p', and what some of the
difficulties might be.

10) Many of the prognostic equations in this chapter include triple-correlation terms such

as w'w'8'. Discuss the steps (but do not do the complete derivation) you would take

to derive a prognostic equation for o(w'w'0’)/dt . Hint, review the general
prog q g

methodology used to derive equations for d(w '8 ")/ot.
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11) Suppose that your best friend sneezes into still air, creating a SEG cloud of
concentration ¢, where SEG = Someone Else's Germs. These germs either multiply
or die depending on the temperature. If the following conservation equation describes
SEG: dc/dt = bc (T-T,), where b and T, are constants and T is temperature, then

derive a prognostic equation for w'c'.



