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—ClosureTechniques —

At first glance, the large number of equations developed in Chapters 3-5 would
suggest that we have a fairly complete description of turbulent flow. Unfortunately, a
closer examination reveals that there are a large number of unknowns remaining in those
equations. These unknowns must be dealt with in order end up with a useful description
of turbulence that can be applied to real situations. In this Chapter, the unknowns are
identified, and methods to parameterize them are reviewed. Simulation techniques such as
large-eddy simulation are discussed in Chapter 10.

6.1 The Closure Problem

As will be demonstrated below, the number of unknowns in the set of
equations for turbulent flow is larger than the number of equations. A
variable is considered to be unknown if one doesn't have a prognostic or diagnostic
equation defining it. When equations are included for these unknowns (changing them to
known variables), one discovers even more new unknowns. Thus, for any finite set of
those equations the description of turbulence is not closed. Alternately, the total
statistical description of turbulence requires an infinite set of equations. This unfortunate
conclusion is called the closure problem. It was first recognized in 1924 by Keller
and Priedmann, and was associated with the non-linear characteristic of turbulence. It has
remained one of the unsolved problems of classical physics.
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To demonstrate the closure problem, recall from equations 3.5.3 in Chapter 3 that the
forecast equation for a mean variable such as potential temperature has at least one

turbulence term in it, such as B(uj‘e ')ﬁ)xi . A quantity like uj'e' is called a double

correlation, or a second statistical moment. To eliminate this as an unknown
we derived a forecast equation for it in Chapter 4 (equation 4.4.3). Unfortunately, this
equation contained additional friple correlation (third moment) terms such as

6'u i'uj'. As you might expect, if we were to write an equation for this third moment, it
would contain a fourth-moment quantity.

The matter is even worse than highlighted above, because 6 'ui'uj' really represents 9

terms, one for each value of i and j. Of these 9 terms, 6 remain as unknowns because of

symmetries in the tensor matrix (e.g., B'u,'u, "= 8'u, 'u,"). Similar problems occur for

the turbulence equations for momentum, as is shown in Table 6-1. There is an casy way
to anticipate which unknowns remain at any level of closure after symmetries are
considered, as is shown in Table 6-2 for momentum correlations. In the full equations of
motion there are additional unknowns such as pressure correlations and terms involvin g
viscosity.

%

Table 6-1. Simplified example showing a tally of equations and unknowns for various
statistical moments of momentum, demonstrating the closure problem for turbulent flow. The
full set of equations includes even more unknowns.

Prognostic Moment Equation Number Number of
Eq. for: ot Egs. Unknowns
_ ou. du.'u;
U. First —i = -3
i o % 3 6
aui'u K d u,'uu,
u,'u.’ Second L = - J 6 10
] ot axk
du.u'u,’ duuv.'u,'u_’
u vu .'ll T Thi.rd 1 k = . 1 k™m I 1
i at o o B
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Table 6-2. Correlation triangles indicating the unknowns for various levels of turbulence
closure, for the momentum equations only. Notice the pattern in these triangles, with the u, v,
and w statistics at their respective vertices, and the cross correlations in between.

rder of Cl I Correlation Triangle of Unknowns
U
Zero ¥y W
2
) u
First
u'v' u'w'
2 = 2
v v'w W
e
Second
2 2
u"v u’w
1 Iz 1 T 1 1] |2
u'v u'v'w u'w
3 2, y i 3
v v'w v'w W

To make the mathematical/statistical description of turbulence tractable, one approach
is to use only a finite number of equations, and then approximate the remaining unknowns
in terms of known quantities. Such closure approximations or closure
assumptions are named by the highest order prognostic equations that are retained.
Using the equations in Table 6-1 as an example, for first-order closure the first
equation is retained and the second moments are approximated. Similarly, second-
order closure tetains the first two equations, and approximates terms involving third
moments.

Some closure assumptions utilize only a portion of the equations available within a
particular moment category. For example, if equations for the turbulence kinetic energy
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and temperature and moisture variance are used along with the first-moment equations of
Table 6-1, the result can be classified as one-and-a-half order closure. 1t clearly
would not be full second-order closure because not all of the prognostic equations for the
second moments (i.e., for the fluxes) are retained, yet it is higher order than first-order
closure. One can similarly define zero-order closure and half-order closure
methods.

Two major schools of thought of turbulence closure have appeared in the literature:
local and nonlocal closure. Neither local nor nonlocal methods are exact, but both
appear to work well for the physical situations for which the parameterizations are
designed.

For local closure, an unknown quantity at any point in space is parameterized by
values and/or gradients of known quantities at the same point. Local closure thus
assumes that turbulence is analogous to molecular diffusion. The Donaldson example in
the next section demonstrates a local second-order closure. In the meteorological
literature, local closure has been used at all orders up through third order.

For nonlocal closure, the unknown quantity at one point is parameterized by
values of known quantities at many peints in space. This assumes that turbulence is a |
superposition of eddies, each of which transports fluid like an advection process.
Nonlocal methods have been used mostly with first-order closure. Table 6-3 summarizes
the myriad of closure methods which have often appeared in the meteorological literature.
Generally, the higher-order local closures and the nonlocal closures yield more accurate
solutions than lower order, but they do so at added expense and complexity.

e e —————
Table 6-3. Classification of closure techniques that have been frequently reported in the
literature. Butk and similarity methods are discussed in more detail in Chapters 9, 11 and 12,

Order Local Nonlocal Other (bulk or similarity methods)
Zero X

Half X X X

First X X

One-and-a-half X

Second X

Third X

%
6.2 Parameterization Rules

Regardless of which order closure is used, there are unknown turbulence terms
which must be parameterized as a function of kmown quantities and parameters. A
known quantity is any quantity for which a prognostic or diagnostic equation is retained.
Using the equations in Table 6-1 for example, if we decide to use second-order closure,
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the unknown quantity ui’uj'uk' can be parameterized as a function of Ul and ui'uj‘,
because we have prognostic equations for these quantities. One must remember that the
equations in Table 6-1 are only a subset of the full set of equations, therefore second-order

closure can also employ other known first and second moments such as 8, 98/dz, or w'q’
in the parameterization. A parameter is usually a constant, the value of which is
determined empirically. For example, the parameter can be a separate term, a
multiplicative constant, or the value of a power or exponent.

By definition, a parameterization is an approximation to nature. In other words,
we are replacing the true (natural) equation describing a value with some artificially
constructed approximation. Sometimes parameterizations are employed because the true
physics has yet to be discovered. Other times, the known physics are too complicated to
use for a particular application, given cost or computer limitations. Parameterization will
rarely be perfect. The hope is that it will be adequate.

Parameterization involves human interpretation and creativity, which means that
different investigators can propose different parameterizations for the same unknown. In
fact, Donaldson (1973) noted that "there are more models for closure of the equations of
motion at the second-order correlation level than there are principal investigators working
on the problem".  Although there is likely to be an infinite set of possible
parameterizations for any quantity, all acceptable parameterizations must follow certain
common-sense rules.

Most importantly,the parameterization for an unknown quantity should be physically
reasonable. In addition, the parameterization must:

» have the same dimensions as the unknown,

» have the same tensor properties.

» have the same symmetries.

» be invariant under an arbitrary transformation of coordinate systems.

» be invariant under a Galilean (i.e., inertial or Newtonian) transformation.

« satisfy the same budget equations and constraints.

These rules apply to all orders of closure.

As an example, Donaldson (1973) has proposed that the unknown ui‘uj‘uk‘ be

parameterized by:

[0@w) o@u) oG@u)
_1/2 ik ik i
-Ae l aXi * Bxi * axk

where A is a parameter having the dimension of length (m), and the knowns are e

(turbulence kinetic energy per unit mass, m%s2 ) and u;"u;” (momentum flux, m?s2).



202 BOUNDARY LAYER METEOROLOGY

This parameterization has the same dimensions (in’s-) and the same tensor properties
(unsummed i, j & k) as the original unknown. The symmetry of the original unknown is
such that the order of the indices i, j, k is not significant. The same symmetry is achieved
in the parameterization by having the sum of the three terms in square brackets. If only
one term had been used instead of the sum, then a change in the order of the indices would

have produced a different numerical result (because @ u'v' /z is not necessarily equal to

du'w'/dy). Since the gradient of the momentum flux is taken in all three Cartesian

directions in the square brackets, any rotation or displacement of the coordinate system
will not change the result. Also, movement of the coordinate system at constant velocity
¢; (a Galilean transformation) does not change the parameterization, as can be seen by
setting x; =X +¢;t.

The final rule is difficult to demonstrate here without a long explanation of all the
constraints on the system, but as a sample we can look at one constraint. The original

unknown appears in budget equation (4.4.1b) as Bui‘uj’uk’;’axj, which represents the

turbulent transport of uy;'n. When the vertical component of this term (B’ui'uj'uk’laz} is

integrated over the depth of the boundary layer it should equal zero, because it represents a
movement of existing momentum flux from one height to another, The momentum flux
drained by this term from one location within the turbulent domain should be deposited in
a different part, yielding no net increase or decrease in total integrated momentum flux.
This budget constraint is indeed satisfied by the parameterization above, because each of
the terms in square brackets becomes zero when integrated over the whole BL depth.

The remainder of this Chapter reviews some of the parameterizations that have been
presented in the literature. This review is by no means comprehensive — it is meant only
to demonsirate the various types of closure and their features. Regardless of the type of
parameterization used, the result closes the equations of motion for turbulent flow and
allows them to be solved for various forecasting, diagnostic, and other practical
applications.

6.3 Local Closure — Zero and Half Order

6.3.1 Zero Order

Zero-order closure implies that no prognostic equations are retained, not even the
equations for mean quantities. In other words, the mean wind, temperature, humidity,
and other mean quantities are parameterized directly as a function of space and time,
Obviously, this is neither local or nonlocal closure because it avoids the parameterization
of turbulence altogether. For this reason, we will not dwell on zero-order closure here,
but will come back to it later in Chapter 9 under the topic of similarity theory.
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6.3.2 Half-order

Half-order closure uses a subset of the first moment equations (3.5.3). A variation of
this approach is called the bulk method, where a profile shape for wind or temperature
is assumed, but where the resulting wind or temperature curve can be shifted depending
on the bulk-average background wind or temperature within'the whole layer.

For example, a boundary-layer (bulk) average <B(t)> is forecast using equations like
(3.5.3), a profile shape [Aﬁ(z)] is assumed, and then the final values of a(z,t) are found
from §(z,t) = <B(0)> + A@(z). Such schemes are used for'bulk or slab mixed-layer

models with Ag(z) = 0 at all heights (see Chapter 11); for, cloud models with AB(2)
modeled as linear functions of height within separate cloud and subcloud layers (see

Chapter 13); and for stable boundary layers with Ag(z) approximated with either linear,
polynomial, or exponential profile shapes (see Chapter 12).

6.4 Local Closure — First Order

6.4.1 Definition

First-order closure retains the prognostic equations for only the zero-order mean
variables such as wind, temperature, and humidity. As an example, consider the idealized
scenario of a dry environment, horizontally homogeneous, with no subsidence. The
geostrophic wind is assumed to be known as a prescribed boundary condition. The
governing prognostic equations (3.5.3) for the zero-order variables then reduce to:

U - —  2@w)

= fc(V-Vg) e (6.4.1a)
oV = — (W)

R

% _ _a(we)

ot oz

The unknowns in this set of equations are second moments: o'w', v'w' and w'0".
To close the above set of equations, we must parameterize the turbulent fluxes. If we

let & be any variable, then one possible first-order closure approximation for flux uj'é’ is:
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uf = -K==2 (6.4.1b)

where the parameter K is a scalar with units m?2s!. For positive K, (6.4.1b) implies that

the flux uj'(";' flows down the local gradient of E This closure approximation is often

called gradient transport theory or K-theory. Although it is one of the simplest
parameterizations, it frequently fails when larger-size eddies are present in the flow,
Hence, we can catalog (6.4.1b) as a small-eddy closure technique.
K is known by a variety of names:

+ eddy viscosity

* eddy diffusivity

* eddy-transfer coefficient

+ turbulent-transfer coefficient

« gradient-transfer coefficient
because it relates the turbulent flux to the gradient of the associated mean variable.
Sometimes, different K values are associated with different variables. A subscript "m" is
used for momentum, resulting in K, as the eddy viscosity. For heat and moisture, we
will use Ky and K for the respective eddy diffusivities. There is some experimental
evidence to suggest that for statically neutral conditions:

KH = KE = 1.35 Km (6.4.10)

It is not clear why K, should be smaller than the other K values. Perhaps pressure-
correlation effects contaminated the measurements upon which (6.4.1c¢) was based.

6.4.2 Examples

Problem A: Given Ky =5 m?s! for turbulence within a background stable environ-

ment, where the local lapse rate is 85,182 =0.01 K/m. Find w '8, the kinematic heat flux.
Solution:  Use uj'i’ =-K ngaxj . Let & represent 6, and set j=3. This gives:

TS 26 2.1
W!e‘ = -KHa— =-i5ms (001 K‘;m) = -005Km,—’s
Z
Discussion: A negative heat flux would normally be expected in a statically stable
environment, assuming only small eddies were present. In other words, in an
environment with warm air above colder air, turbulence moves warm air down the
gradient to cooler air, which in this case is a downward (or negative) flux.
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Problem B: Suggest parameterizations to close the set of equations (6.4.1a).

Solution:
Vo = k8
u'w' - Km%g
VW = - Km%—z‘l

Discussion: If these equations are plugged back into (6.4.1a), then there are 3

equations for the 3 unknowns E, U, and V. This is a closed set which can be solved

numerically if the K values are known. Although the assumption that K=constant is an
easy assumption, it is the least realistic. It would be better to parameéterize K as a

function of the knowns: 8, U, and V, or of gradients of those knowns.

Problem C: Given Ky =5 m?s? for turbulence within'a background horizontally

homogeneous environment, find u'6".
Solution:
— 36
u 9 = - KH g
But 96/0x = 0 for a horizontally homogeneous environment, Thus u'8" = 0.

Discussion: It makes no difference whether Ky is positive, negative or

exceptionally large. K-theory will always yield zero flux in a uniform environment,
regardiess of the true flux.

6.4.3 Analogy with Viscosity

As we saw in Section 2.9.3, the molecular stress 7,,,; can be approximated by T, =

p v 0U/dz for a Newtonian fluid. By analogy, one might expect that the turbulent
Reynold's stress can be also expressed in terms of the shear, with a corresponding change
from molecular viscosity Vv to eddy viscosity K., yielding: Treynoias = P Ky 0U/0z.

Dividing this latter expression by p gives the kinematic form (6.4.1b). The product
p-K, is sometimes called the Austausch coefficient.
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Since turbulence is much more effective than viscosity at causing mixing, one would
expect K, >v. Values of K,, reported in the literature vary from 0.1 m2s! 1o 2000
m?s’?, with typical values on the order of 1 to 10 m?s™l, Values of v are much smaller,
on the order of 1.5x10° m?s™! .

Magnitude is not the only difference between the molecular and eddy viscosities. A
significant difference is that v is a function of the fluid, while K, is a function of the flow.
Thus, while v is uniquely determined by the chemical composition of the fluid and its
state (temperature and pressure, etc.), K, varies as the turbulence varies. Thus, one
must parameterize K, as a function of other variables such as z/L, Richardson number or

the stability 90 /dz, as outlined in Section 6.3.2.4.

6.4.4 Mixing-Length Theory

The following development is patterned after the mixing-length arguments proposed
by Prandtl in 1925. Assume that there is turbulence in a statically neutral environment,
with a linear mean humidity gradient in the vertical as sketched in Fig 6.1a. If a turbulent
eddy moves a parcel of air upward by amount z' towards some reference level Z during
which there is no mixing nor other changes in the value of q within the parcel, then the
humidity of that parcel will differ from the surrounding environment by amount g', where:

dq
q=- (E z' (6.4.42)
If the background mean wind profile is also linear, then a similar expression can be
written for u'";
“[au
LU ol A (6.4.4b)

In order for the parcel to move upward a distance z', it must have had some vertical
velocity w'. If the nature of turbulence is such that w' is proportional to u', then we

might expect that w' = - ¢ u’ for the the wind shear sketched in Fig 6.1b (i.c., for dU/0z >

0), and w' = ¢ u’ for dU/dz < 0, where c is a constant of proportionality. Substituting
(6.4.4b) for u' in the above expression for w' yields

oU
9z

where we find that the magnitude of the shear is important.

w o= ¢ z' (6.4.4¢)
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. (b)
Vi

»

u

Fig. 6.1 Movement of an air parcel {shaded line) within-a background having
linear moisture and wind gradients (heavy line).. The superposition of
many such parcels, starting at different levels but all ending at level Z,
forms the conceptual basis for "mixing length theory.”

In Sections 2.6 and 2.7 it was shown that the kinematic eddy flux of moisture is R =

w'q". Since we know q' from (6.4.4a) and w' from (6.4.4c), we need only multiply the
two together, and then average over the spectrum of different size eddies z' to get the

average flux R:
5
(&) 6440

We recognize 2% as the variance of parcel displacement distance. The square rootof it is a

a0

oz

R = -¢(2)?

measure of the average distance a parcel moves in the mixing process that generated flux

R. In this way, we can define a mixing length, I, by P=c z'z‘ Thus, the final
expression for moisture flux is

oU
dJz

R = -1°

dq
. ( 51—) (6.4.4¢)
This is directly analogous to K-theory if

ou
oz

2

Kg = I (6.4.4f)

because that Jeaves us with R =- Kg (dq/0z). In fact, mixing-length theory tells us via
(6.4.4f) that the magnitude of Kg should increase as the shear increases (i.e., a measure of

the intensity of turbulence) and as the mixing length increases (i.e., a measure of the
ability of turbulence to cause mixing).
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In the surface layer, the size of the turbulent eddies is limited by the presence of the
earth's surface. Thus, it is sometimes assumed that /2 = k222, where k is the von
Karman constant. The resulting expression for eddy viscosity in the surface layer is

a0

- 12,2
KE—kZ z

(6.4.4g)

For SBLs, Delage (1974) proposed the following parameterization for mixing length
that has since been used as a starting point for other parameterizations (Estournel and

Guedalia, 1987; and Lasser and Arya, 1986):

1 _ 1 + 1 + B
b kz ooooaGt! Kl

(6.4.4h)

where L; is a local Obukhov length (see Appendix A) based on local values of stress and

heat flux above the surface, G is geostrophic wind speed, and B is an empirical constant.

Before leaving this section, we should examine the limitations of mixing-length
theory. The relationship between w' and z' given by (6.4.4c) is only valid when
turbulence is generated mechanically. Hence, mixing-length derivation is valid only for
statically neutral situations, even though K-theory has been applied to statically
stable conditions. Also, linear gradients of wind and moisture were assumed in (6.4.4a
& b). In the real atmosphere, gradients are approximately linear only over small distances
(i.e., the first-order term of a Taylor's series expansion). Hence, we see that mixing-
length theory is a small-eddy theory.

6.4.5 Sample Parameterizations of K

The eddy viscosity is best not kepi constant, as mentioned earlier, but should be
parameterized as a function of the flovww. The parameterizations for K should satisfy the
following constraints: « K =0 where there is no turbulence.

+ K=0 atthe ground (z=0).

» Kincreases as TKE increases.

+ K varies with static stability (in fact, one might expect that a
different value of K should be used in each of the coordinate
directions for anisotropic turbulence).

+ K is non-negative (if one uses the analogy with viscosity).

This latter constraint has occasionally been ignored. The normal concept of an eddy
viscosity or a small-eddy theory is that a turbulent flux flows down the gradient. Sucha
down-gradient transport means heat flows from hot to cold, moisture flows from
moist to dry, and so forth. Such down-gradient transport is associated with positive
values for K, and is indeed consistent with the analogy with molecular viscosity.
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Table 6-4. Examples of parameterizations for the eddy viscosity, K, in the boundary layer.

Meutral Surface Layer:

K = constant not the best parameterization

K=u2T, where u. is the friction velocity

K=U2T, where T, is a timescale

K=kzu. where K is von Karman's constant

K=k222 [(30/z)° + (N/32)9"2 from mixing-length theory

K = 12 (30/32)2 where | = k(z+2o)/{1+]k(z+2o)/Al), A=length scale

Diabatic Surface Layer  (generally, Kgatically unstable > Knoutral > Kstatically stable)

K=Kkzu./ &y (zl) where 6 4 a dimensionless shear (see appendix A),
and L is the Obukhov length (appendix A)

K= k322 [(@0z) + {(g fe_v}-|ai3_vfaz|}”2] for statically unstable conditions

K= k222 [(30/3z) - (L./2)V8{(15q fg;}-|88_vfaz|}1"2] for statically stable conditions, where

L= -0uw(15kg8.)

Neutral or Stable Boundary Layer
K = constant see Ekman Spiral derivation in next subsection
K = K(h) + [(h-2)/(h-zg) P K(zgy) - K(h) + (z-zSL)[aKlaz]ZSL + 2(K(zg)-K(M)/(h-zg )T}
this is known as the O'Brien cubic polynomial

approximation (O'Brien, 1970), see Fig 6-2, where
Zg| represents the surface layer depth.

Unstable (Convective) Boundary Layer:

K =1.1[(Re- Ri) /2 / Ri] |3Usaz| fordB 6z >0  where /=kz forz <200 mand

K= (1-18R)"2 /2 pUsaz| for 38 _/3z < 0 I=70m forz>200m.

Numerical Model Approximation for Anelastic 3-D Flow:

K= (0.25 4)% - 0.5 ; T [30/ax; + 3yax; - (213)5;5(@0/ax)i2 ' where a=grid size
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In the real atmosphere, however, there are occasions where transport appears to flow
UP the gradient (i.e., counter-gradient). As it turns out, this is physically explained
by the fact that there are large eddies associated with rise of warm air parcels that transport
heat from hot to cold, regardless of the local gradient of the background environment.
Thus, in an attempt to make small-eddy K-theory work in large-eddy convective boundary
layers, one must resort to negative values of K. Since this results in heat flowing from
cold to hot, it is counter to our common-sense concept of diffusion. Thus, K-theory
is not recommended for use in convective mixed layers.

There has been no lack of creativity by investigators in designing parameterizations for
K. Table 6-4 lists some of the parameterizations for K that have appeared in the literature
(Bhumralkar, 1975), and Fig 6.2 show a typical variation of K with height in the
boundary layer. Variations of K in the horizontal have also been suggested to explain
phenomena such as mesoscale cellular convection (Ray, 1986).

Boundary Layer

Zsi
g

Surface Layer
0 K{ny t K

Fig. 6.2 Typical variation of eddy

viscosity, K, with height in
the boundary layer. After
Q'Brien (1970).

6.4.6 The Ekman Spiral in Atmospheres and Oceans

Even with first-order closure, the equations of motion (3.5.3) are often too difficult to

solve analytically. However, for the special case of a steady state [9( )/t=0],

horizontally homogeneous [3( )/dx = 0, 8( )/dy = 0], statically neutral [ae_vfaz = 0],

barotropic atmosphere [LTg & Vg constant with height] with no subsidence [W=0], the
equations of motion can be reduced to:
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{ 0=-£(V,-V)- Ta (“':'r)
L 0=+£(T,-T) - 8_(5?_“:1 (6.4.62)

An analytic solution of these equations for the ocean was presented by Ekman in 1905,
and was soon modified for the atmosphere.

Atmosphere: The following derivations are based on the approach of Businger

(1982). Define the magnitude of the geostrophic wind, G, by G =[ U_g2 + Vgg ]m. Pick

an x-axis aligned with the geostrophic wind; thus, Vg =0 and Tf; =G. Use first-order

local closure K-theory, with constant K,,. Hence, u'w' = -K, dU/dz and v'w'=-K,

dV/dz. Inserting these into (6.4.6a) leaves the following set of coupled second-order
differential equations:

—
fc:V'r =-Kn a’u
[ 0z2
\ £.@T-0 - 4K, 22V (6.4.6b)
dz2

The four boundary conditionsare U=0 atz=0, V=0 atz=0, U—G asz — oo,

and V=0as z— eo. It is assumed that the winds become geostrophic away from the
surface.
The solution to this set of equations for the atmosphere is

U=G [1 —e P cos CYEZ}J

V=G [e_ Y sin (’}’Ez)} (6.4.6¢)

where Vg = [fc/(EKm)]l-"2 . The velocity vectors for this solution as a function of height

are plotted in Fig 6.3a.  The tip of the vectors trace out a spiral — hence the name
Ekman Spiral.
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(a) Atmosphere
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- Surface Drift Current

Drift Current
Below Surface

Fig. 6.3  Ekman spiral hodographs for wind and current vectors. After

Businger (1982).

= ]

According to this solution, the surface wind vector is 45° to the left of the geostrophic
wind vector in the Northern Hemisphere. Hence, the surface stress is also in this
direction, because it is caused by the drag of the surface wind against the surface. Use
u.? as a measure of the surface stress magnitude, where .2 = [whH2+ (viwHZ 2
[(K,,0U/92)? + (K_,0V/3z)2 112 evaluated at z=0. Inserting (6.4.6¢) into this expression
yields:

v} = G(K,f,)" (6.4.6d)

The wind speed is supergeostrophic at height z = /Y, which is also the lowest height
where the wind is parallel to geostrophic. Sometimes this height is used as an estimate of
the depth of the neutral boundary layer. Hence, the Ekman layer depth, hg,

is defined as  hg = n/Yg. If K, is assumed to equal c-k-ug-hg, where ¢ is a constant of

proportionality equal to about 0.1, and k is the von Karman constant, then the Ekman
layer depth for a neutral boundary layer becomes:

B

h, = (6.4.6¢)

E

2| Y
2ckm (fc

. /
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The major conclusion from the Ekman solution is that friction reduces the boundary
layer wind speed below geostrophic, and causes it to cross the isobars from high towards
low pressure. In a synoptic situation where the isobars are curved, such as a low or high
pressure system, the cross-isobaric component of flow near the surface causes
sonvergence or divergence, respectively. Hence, mass continuity requires that there be
rising air in low pressure systems, and descending air in highs. The process of inducing
vertical motions by boundary layer friction is called Ekman pumping.

Qcean. The ocean drift current is driven by the wind stress at the surface, neglecting
pressure gradients in the ocean. Hence, the equations of motion reduce to:

— 2
£V = -Kp &Y
oz2
2_—.

£0 = +Kp oY (6.4.65)
9z?

This time, let us choose a coordinate system with the x-axis aligned with the surface
stress, and z positive up. Thus, the four boundary conditions become: K,,0U/0z = u.?

atz=0, 9V/oz =0 atz=0, U—0 asz—>-o0, and V — 0 as z — -co. Thus, the
current is assumed to go to zero deep in the ocean. In the equations above, K, and u

refer to their ocean values, where |:r“_,m,-1.14,‘,,Wr2 = surface stress = pm-r-u*mz.
The solution is:
u
— o Yoz _ E_
U= BN {SE COS(YEZ 4)]
(Katy
vk
V = PERY 1:6752 sin (YEZ - %)] (6.4.6g)
(¥at)
m c

where K, and Y now apply to ocean values. This solution gives a surface current that is
45° to the right of the surface stress, making it parallel to the geostrophic wind in the
atmosphere. Based on typical values of eddy viscosity in the air and ocean, the magnitude
of the surface drift current is roughly G/30. Deeper in the ocean the current reduces in
speed, and turns to the right as shown in Fig 6.3b. This causes horizontal convergence
in the ocean under atmospheric regions of horizontal divergence, and vice versa. Hence,
we expect downwelling water movement under synoptic high pressure systems, and
upwelling under lows.
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Discussion. Although the Ekman solution is analytic and has been around for a
long time, the conditions under which it was derived rarely happen in nature in the
atmosphere. At best, it gives an approximate quantitative solution for statically neutral
boundary layers (i.e., mechanical turbulence production characteristic of strong winds,
with no buoyancy effects). For convective mixed layers, the Ekman profile
shape is not observed, although it qualitatively agrees with the observed winds,
which are subgeostrophic and cross-isobaric. Observed stable boundary layers
can have supergeostrophic winds at low altitudes, making the Ekman
solution even qualitatively incorrect.

6.5 Local Closure — One-and-a-half Order

One-and-a-half-order closure retains the prognostic equations for the zero-order
statistics such as mean wind, temperature, and humidity, and also retains equations for the
variances of those variables. The TKE equation is usually used in place of the velocity
variance equations. The following development is based on the work of Yamada &
Mellor (1975).

As an example, consider the idealized scenario of a dry environment, horizontally
homogeneous, with no subsidence. The governing prognostic equations are (3.5.3) for
the zero-order variables, (4.3.3) for the temperature variance, and (5.1b) for TKE:

oU . /= —y o@w)

5 = (V-V,) - =5 (6.52)
oV — 3 (v'w)

5 = -fc(U~Ug -

3 _ 3 (w'o)

o oz

#_ =m0 oV (_g_)? a[w'((p'{'p)+e):]

ax Ve YV t\g/vY - 3z " E

9(9_'2) —— 30  aw'e?)

_at—'-=-2W8§-—'——az ‘2€9‘€R

The unknowns in this set of equations include second moments (fluxes): u'w', v'w',

AT T = e — 2 ST
w'8', w'p'/p; third moments: w'e, w'60'": and dissipations: €, &y, and gg.
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At first glance, the addition of the variance equations appears to have hurt us rather

than helped us. With first-order closure we had the 3 unknown fluxes: u'w', Vv'w/,

w '8', The addition of the variance equations did not eliminate these fluxes as unknowns,

and in fact added 6 more unknowns. So why did we do it?
The reason is that knowledge of the TKE and temperature variance gives us a measure
of the intensity and effectiveness of turbulence. Hence, we can use this information

within improved parameterizations for eddy diffusivity, K, (e, 9'2). One suggested set
of parameterizations for the unknowns is:

— . =3\ aU

oW = —Km(e,e'z} = (6.5b)
= - g2) v

vwe = -Km(e,azjg

— —\ 90 —

w9 = -Ky (e,fa'z)g - vc(e,e'z)

wl@mre] = (3) AL

W

=
wo? = A28

oz

- 3/2 =122
gg =0 g =E g = < 6

A, A,

where the A factors are empirical length-scale parameters. These length scales are often
chosen by trial and error, in an attempt to make the simulated flow field match observed
laboratory or field cases. One problem with the closure of (6.5b) is that the length scales
are rather arbitrary.

The expressions for K are too complex to reproduce here, but can approximately be
represented by:

- 12
K=Ae (6.5¢)

where A represents one of the empirical length scales.
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The second correlation terms are approximated as functions of gradients of mean

values (e.g., the vertical flux of temperature, w '0’, flows down the local vertical gradient

of temperature 96/0z). Similarly, the triple correlation terms are approximated as
functions of gradients of second correlations (e.g., the vertical flux of temperature

variance w'0'" flows down the local vertical gradient of temperature variance 88‘2;’32).

The higher-order closure is thus very similar to the first-order closure — both depend on
the local gradients and values of knowns.

The viscous dissipation terms of TKE and temperature variance are modeled as being
proportional to their respective variables. For this reason, dissipation rates are sometimes
used as a measure of the intensity of turbulence. More intense turbulence dissipates faster

e . ~ 1/2
than weaker turbulence. The modeled dissipation rate has a timescale of A/e . The ¥,

parameter is added to the parameterization of w '8' to allow heat flux even when there is

no mean gradient. This allows better representations of mixed layers. The pressure and
turbulent transport terms assume that transport is down the mean TKE gradient.

The set of equations given by (6.5a & b) is too complex to solve analytically.
Typically, these equations are approximated by their finite difference equivalents, and then
solved numerically on a digital computer. Figs 6.4 through 6.6 shows a boundary-layer
numerical simulation of a two day period from the Wangara field experiment, This
simulation, produced by Yamada and Mellor using their one-and-a-half-order closure, not
only shows the evolution of mean quantities such as wind (Fig 6.4) and virtual potential
temperature (Fig 6.5), but it also shows the evolution of TKE (refer back to Fig 5.1) and
temperature variance (Fig 6.6).

0-5 ] 1 i I T T 1 i T ] i T T 1 T L]
E
x
=025 -
=
D
T
0.05
. /\I/I
6  t(h)
j¢———Day 33 ol Day 34 ol Day 35 —|

Fig. 6.6  Simulated (1 1/2 order closure) time and space variation of 6"
(virtual potential temperature variance, units K2), Maximum
values at the surface are 0.79 and 1.9K at 1300 on Day 33 and
1400 on Day 34 of Wangara, respectively (after Yamada and
Mellor, 1975).
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An alternative approach, called e-£ closure (or k-¢ closure in the engineering
literature) avoids the A uncertainty by including a highly-parameterized prognostic
equation for the dissipation rate in addition to the equation for TKE (Beljaars, et al., 1987
Kitada, 1987; Detering and Etling, 1985). The dissipation equation, which should be
included with (6.5a), is sometimes written as:

ae £ Tegrt af [ E}V

%€ — ¢ E| -uw = -viw .§.
2E\

2
. £
ot el g dz dz | } - C ? (6.5d)

q:>|[rm

where the parameters are ¢, = 1.44, ¢ = 1.0, and ¢y = 1.92.
The following additional closure assumption should also be added to (6.5b):
= K ode

£ = '@5 (6.5¢)

-

where cg = 1.3. In place of (6.5¢), the eddy diffusivity can now be parameterized as:

b2

(cs58)

5 (6.51)

K =

where cg5 = 0.3. Similarly, the remaining length scales in (6.5b) are hopefully more
accurate because they are a function of prognostic variables:

- 3{"2
=3

A= E— (6.5g)

The k-g version of one-and-a-half-order closure has been used to simulate boundary
layer evolution, flow over changes in roughness and topography, and sea-breeze fronts.

By studying Figs 6.4 to 6.6, we can learn some of the advantages of higher-order
closure. (1) The higher-order scheme creates nearly well-mixed layers during the daytime
that increase in depth with time. (2) At night, there is evidence of nocturnal jet formation
along with the development of a statically stable layer near the ground. (3) Turbulence
intensity increases to large values during the day, but maintains smaller values at night in
the nocturnal boundary layer. First-order closure, on the other hand, gives no
information on turbulence intensity or temperature variance. Furthermore, it has
difficulty with well mixed layers that have zero gradients of mean variables. However,
the benefits of higher-order closure do not come cheaply; they are gained at the expense
of increased computer time and cost compared to first-order closure.
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6.6 Local Closure — Second Order

The development of higher-order closure (usually meaning anything higher than
first-order closure) was closely tied to the evolution of digital computer power. Although
the use of higher-moment equations for turbulence forecasting was suggested in the early
1940's, the large number of unknown variables remained a stumbling block. Then,
around 1950, Rotta and Chou and others suggested parameterizations for some of the
unknowns. By the late 1960's, computer power improved to the point where second-
order closure forecasts for clear air turbulence and shear flows were first made. In the
early 1970's, the United States Environmental Protection Agency began funding some
second-order closure pollution dispersion models, and by the mid 1970's a number of
investigators were using such models. In fact, second-order closure appears to have
started before one-and-a-half-order closure. In the late 1970's, some third-order closure
models also started to appear in the literature, with many more third-order simulations
published in the 1980's.

The set of second-order turbulence equations includes not only those from one-and-a-
half-order, but it includes second moment terms as well (Wichmann and Schaller, 1986).
Using the same idealized example as above, consider a dry environment, horizontally
homogeneous, with no subsidence. The additional governing prognostic equations are

(4.4.1b) for ui'uj', and (4.4.3¢) for w'@". The resulting set of coupled equations is:

U, — - d@Ww) _
? = 'fc eij:; (UgJ-UI) - T (for 1#3) (6.63)
9 _ Aw'e)
ot oz
k& _ —— U0 f£+(£)‘".é.“ a[“"(@'@*eﬂ
x - "W YYD 7 A oz -
a(e72) B d(we?)
R - - 28 - &
a(ui‘u.‘ aﬁ — a_-. a(ui'u.'w’) g — —
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2(u9) —— 30 ——o8 0(uywe) a2 (l\ , 08’
—at—‘=-WBEL'UiW'§‘T+8i3g§+ ﬁjpaxi"sue

The unknowns in this set of equations include pressure-correlation terms:

(/DL 06'/0% ], (p'/p) [aui';axj + auj'axi] and w'p /P; third moments: w'e, W'G'Z,

ui"w'B', and ui‘uj'w'; and dissipation terms: g, €g, g, €. euillj' Table 6-5 lists two
different parameterizations (Deardorff, 1973; Donaldson, 1973) for some of these terms.
Many other para-meterizations have appeared in the literature (Launder, et al., 1973;
Lumley and Khajeh-Nouri, 1974; Mellor and Yamada, 1974; Wyngaard, et al.,, 1974;
Mellor and Herring, 1973; Hanjalic and Launder, 1972; Lumley and Mansfield, 1984;
Rotta, 1951; Schumann, 1977; Wyngaard, 1982; Zeman, 1981; Wichmann and Schaller,
1986; Wai, 1987).

Table 6-5. Sample second-order closure parameterizations suggested by (A) Donaldson, and
(B) Deardorff. {Reference: Workshop on Micrometeorology, 1973). The A; are length scales,
which are either held constant or based on mixing-length arguments.

1
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Sample forecasts using second-order closure (from Sun and
Ogura, 1980). Solid lines in (b) and (d) indicate model forecast;

shaded areas show range of observed values.
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There are three basic closure ideas contained in Table 6-5:
* Down-gradient diffusion (items 1-3 and 6 in the table), diffusion of the
third-order statistics down the gradient of the second-order statistics:
* Return to isotropy (items 4 and 5), proportional to the amount of anisotropy;
* Decay (items 7 and 8), proportional to the magnitude of the turbulence.

A sample second-order closure model forecast is given in Fi g 6.7, based on the moist
convective boundary layer simulations of Sun and Ogura (1980). In addition to the

equations listed above, they included prognostic equations for mixing ratio, r, moisture

. 2 . —_ . . nt :
variance r'", moisture flux w'r’, and temperature-moisture covariance, r'o . Using the

full second-order set of equations, they could produce forecasts of mean variables (Fig
6.7a), as can be produced (with poorer accuracy) by first-order closure. They could
forecast variances (Fig 6.7b), as can be produced (with poorer accuracy) by one-and-a-
half-order closure. Most importantly, they can also produce forecasts of fluxes (Fig 6.7¢c)
and other covariances (Fig 6.7d) that the lower-order schemes can not forecast.

6.7 Local Closure — Third Order

It is beyond the scope of this book to go into the details of third-order closure. In
general, the prognostic equations for the triple-correlation terms are retained, while
parameterizations are devised for the fourth-order correlations, for the pressure
correlations, and for viscous dissipation. Some of the parameterizations presented in the
literature (André, et al, 1978; Wyngaard, 1982; Moeng and Randall, 1984; Bougeault,
1981a, 1981b, 1985; Wichmann and Schaller, 1985; André and Lacarrere, 1985; Briere,
1987) assume that the fourth-order moments have a quasi-Gaussian probability
distribution, and can be approximated as a function of second-moment terms. Any
unrealistic values for some of the third moments are truncated or clipped to remain
within physically realistic ranges, and various eddy damping schemes are used to prevent
negative variances.

Itis generally assumed that equations for lower-order variables (such as mean wind or
fluxes) become more accurate as the closure approximations are pushed to higher orders.
In other words, parameterizations for the fourth-order terms might be very crude, but
there are enough remaining physics (unparameterized terms) in the equations for the third
moments that these third moments are less crude. The second moment equations bring in
more physics, making them even more precise — and so on down to the equations for the
mean wind and temperature, etc. Based on the successful simulations published in the
literature, this philosophy indeed seems to work.

Higher-order moments are extremely difficult to measure in the real atmosphere.
Measurements of fluxes (second moments) typically have a large amount of scatter. Eddy
correlation estimates of third moments are even worse, with noise or error levels larger
than the signal level. Accurate fourth-order moment measurements are virtually
nonexistent. This means that we have very little knowledge of how these third and fourth
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moments behave: therefore, we have little guidance for suggesting good parameterizations
for these moments. Now we see why such crude approximations are made in third-order
closure models.

Higher-order closure models have many parameters that can be adjusted
advantageously to yield good forecasts. These parameters are fine-tuned using special
limiting case studies and laboratory flows where simplifications cause some of the terms
to disappear, allowing better determination of the few remaining terms.

6.8 Nonlocal Closure — Transilient Turbulence Theory

Nonlocal closure recognizes that larger-size eddies can transport fluid across finite
distances before the smaller eddies have a chance to cause mixing. This advective-like
concept is supported by observations of thermals rising with undiluted cores, finite size
swirls of leaves or snow, and the organized circulation patterns sometimes visible from
cloud photographs.

Two first-order nonlocal closure models will be presented here. One, called
transilient turbulence theory, approaches the subject from a physical space
perspective.  The other, called spectral diffusivity theory, utilizes a spectral or
phase-space approach. Both allow a range of eddy sizes to contribute to the turbulent
mixing process.

Two separate forms of ransilient turbulence theory have evolved (Stull, 1984): one in
discrete form for numerical modeling, and the other in analytical integral form for
theoretical work. We will start with the discrete form because it is easier to picture
physically.

6.8.1 Discrete Form — Definition of Framework

Imagine a one-dimensional column of air that is split into separate equal-size grid
boxes, as sketched in Fig 6.8a. In a numerical model, grid point locations in the center of
each box represent the average conditions within those boxes. If we focus on just one
particular (reference) grid box, we can identify those eddies that mix air into our reference
box from other boxes above and below, and we can locate the destination boxes for air
that leaves the reference box. This same procedure can be used to investigate mixing
between all boxes in the column, as shown by the superposition of eddies in Fig 6.8b.

Turbulent mixing of fluid into our reference box (the box with index i) from the other
boxes can change the state (temperature, humidity, tracer concentration, etc.) of that box.

For example, let & represent the average concentration of passive tracer in our reference
box, i. If ¢;; represents the fraction of air in box i that came from box j during a time
interval At, then we need only sum the mixing from over all N grid boxes in the column
to find the new concentration at box i:
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Fig. 6.8

(a) Schematic
idealization of the
eddies that mix
air to and from
the center grid
box,ina1-D
column of air. (b)
Superposition of
eddies acting on
3 of the grid
boxes. After Stull
(1984).

N

A= D o (LA E;®) (6.8.1)

i=1

This equation says that when air is mixed into box i from box J» the air carries with it an

amount ¢; of the tracer with concentration & The coefficient ¢;; represents the fraction
of air in box i that remains within box i.

Although (6.8.1) was developed for just one reference box, it is general enough to
work for any and all equal-size boxes. If we recognize that ¢;; is an NxN matrix of

mixing coefficients (called a iransilient matrix), and F,j is a Nx1 matrix (i.e., a vector)
of concentrations, then it is obvious that (6.8.1) describes simple matrix multiplication,
When eddies move parcels of air from one grid box to another, the air will carry with
it not only the tracer concentration, but the heat, moisture, momentum and other measures
of the state of the fluid. Hence, (6.8.1) can be used for any of these variables, where the
transilient matrix is the same for each variable (i.e., it changes only with time and

timestep). Of course, the ij vector is different for each variable.

A variety of physical processes can be modeled with the ransilient scheme depending
on the form of the transilient matrix. Idealized examples of complete mixing, small-eddy
mixing (like K-theory), a detraining updraft core, patchy turbulence, no turbulence, and
eddies triggered by the surface layer are illustrated in Fig 6.9a.

Fig 6.9b shows measurements (Ebert et al., 1989) of the transilient matrix for a
convective ML, with a less-turbulent FA above it. Contoured values of the matrix are
presented rather than the raw numbers, and the matrix is flipped upside-down so that the
vertical coordinate corresponds to height increasin g upward in the atmosphere. Not only
1s the mixing very nonlocal, but the matrix is asymmetric. Also in this figure is a diagram
indicating the interpretation of such transilient matrices,
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Fig.6.9a Examples of idealized transilient matrices showing nonlocal
mixing possibilities. The arrows are not physical eddies, but
they represent the net mixing effect of many real eddies acting
in 3-D space. Grid index conventions are indicated in the top
left drawing.
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Fig 6.9b

(a) Measured transilient matrix for a

convective mixed layer capped by a

less-turbulent free atmosphere, {c)
evaluated from a large-eddy
simulation model. (b) Contour plot of
the same transilient matrix elements.
{c) Physical interpretation of the
transilient matrix. All presentations
are flipped upside-down such that the
top of the boundary layer is at the top
of the vertical axis of the presentation.
Contours indicate the percentage of
air moving from any source location to
any destination, where top is 2400 m
above ground, and where the ML is
1600 m thick. After Ebert et al. (1589).
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6.8.2 Physical Constraints

If the total amount of air within the reference box does not change with time, then just
as much air must leave the box during At as enters. Expressed in another way, if ¢;; is the
fraction of air entering box i from box j, then by definition the conservation of air
mass requires that the sum over j of all mixing fractions be unity:

1= 2 cij (6823)

N
=1
One way to visualize this is to picture a column of air with initially the same tracer
concentration in each box. We known that after any amount of mixing, the final
concentration in any of the boxes must equal the initial concentration:

- - N
& =% = %1 S &, This is satisfied by (6.8.2a).

Also, if the amount of tracer initially in box j is conserved as it mixes out of j and into
the other boxes, i, then conservation of tracer amount requires that:

N
| = Zf o (6.8.2b)

ht

One way to appreciate this constraint is to picture a column of air with no tracers in any

box, except for a unit amount of tracer in one box (Ej =1). If all of the tracer is initially
in box j, then after the mixing associated with one timestep, some of this tracer could be
mixed into any or all of the other boxes. Nevertheless, the total amount of tracer in all

boxes must still sum to unity ( 'gléi = 1). The only way that this is possible given mixing

defined by (6.8.1) is if (6.8.2b) is true.

We see that (6.8.2a & b) are conservation constraints for air mass and tracer mass. In
addition, none of the individual elements ¢;; should be allowed to be negative, otherwise
turbulence would cause "unmixing" and would decrease randomness or entropy. Thus,
each element of the matrix mustbe 0 < Cjj <1, and each row and each column must sum
to one. Such a matrix is sometimes called a doubly stochastic matrix.

6.8.3 Numerical Constraints.

One ancillary feature of the physical constraints is that a numerical forecast based on
transilient turbulence theory is absolutely numerically stable for any size timestep
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and any size grid spacing (Stull, 1986). No additional numerical constraints are required
to achieve this characteristic.

To show this, we can employ Gershgorin's theorem of linear algebra (Pearson, 1974)
that states that the largest modulus (magnitude) of any of the eigenvalues of the transilient
matrix is no greater than the largest sum of any row or column of our non-negative matrix,
Because each of our rows and columns sum to one, we know that the largest eigenvalue
modulus is no greater than one. This latter condition means that numerical stability is
insured. See Haldner and Williams (1980) for details of this last statement.

There is one numerical constraint that is recommended: that no eigenvalue of the
transilient matrix be negative. It can be shown that a transilient matrix with a negative
eigenvalue causes the tracer concentration to oscillate from timestep to timestep. This
characteristic is undesirable because the solution depends on the timestep rather than the
physics. As a general guideline, transilient matrices with large elements clustered around
the cross-diagonal of the matrix rather than around the main diagonal are matrices likely to
be timestep dependent.

6.8.4 Flux Determination

Turbulent kinematic fluxes are also easy to determine, because the transilient matrix

tells us directly about the ransport between grid boxes. The kinematic flux w'g'(k)
across level k is given by:

k N
VE® = ( }Z IR (6.8.42)

i=1 j=1

where Az is the grid point spacing, and At is the timestep interval for the c;;(t,At) matrix.
The level k is defined as the border between grid boxes k and k+1. Thus, although Ei

is known at the center of a grid box, w'€'(k) is known at the edge of the grid box. This
makes physical sense, because the flux represents the transport between grid boxes.

We expect that the flux across any level k should depend on only those eddies that
cross that level (Ebert et al, 1989)., When (6.8.4a) is rewritten as (6.8.4b), we see that
one of the sums is from 1 to k, while the other is from k+1 to N. This implies that the

source and destination grid boxes of those eddies that contribute to the flux are below and
above k, respectively.

k N :_ - —
wE(k % Z 2 ¢ ij} (6.8.4b)
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An outline is given here for the derivation of (6.8.4a). First, start with a simple
conservation equation where the only forcing is vertical flux divergence: 9&/dt = -

ow'E'/0z. Integrate this over one timestep, from t to t+At, and rewrite the result as

aw!g'm/az = [ &) - &(t+At)]/ At. Next, integrate this from the surface (z=0) to the
height of interest where the flux is desired (z=Z), where Z = k Az. By splitting the
integral of the right side of the equation into the sum of smaller integrals, where each small
integral is over one grid box of depth Az, our equation now becomes

— At — Al

w'E (Z) - w'& (0) = (Az/AY i}_:: [Ei(t) - Ei(t+At)]. But the turbulent flux across a

solid boundary, or into any nonturbulent part of the atmosphere, is zero by definition,
making the second term on the left become zero. Also, the term in square brackets can be

N - N =
written using (6.8.1) and (6.8.2a) as [ _];:lcij & - JEI S éj ]. A bit of algebraic

manipulation puts the final result into the form of (6.8.4a).

As just stated, the turbulent flux across a solid boundary is zero by definition, even
though the nonturbulent fluxes might not be zero (see Section 7.1 for a discussion of

effective fluxes). Thus, w'E'(k=0) = 0. With this boundary condition, (6.8.4a) can be
rewritten as a recursion relationship:

o __ Az |~ T3
wE (k) = wE (k-1) + [;Jz ckj[ﬁk-ij] (6.8.4¢)
j=

1
6.8.5 Example of Transilient Framework
Problem: Suppose that we start with a shallow mixed layer of depth 300 m within a

500 m column of air, with initial profiles of potential temperatures and winds as indicated
below. Assume the column is divided into five equal-thickness (100 m) grid boxes.

Profile A:

Given: Grid index = 1 2 3 4 5
z (m) = 30 150 250 350 430 (At the box centers)
8 (°C) = 15 15 15 16 18
Umsy = 5 5 5 7 6
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Next, assume that there are molecular (nonturbulent) fluxes of heat, Qg = 0.2 K m/s,

and momentum, F = -0.15 m2s-2, across the land surface into the air. During a 10 min
timestep, we can assume that there is a surface molecular flux into the bottom of the

bottom layer, but no molecular flux out of the top of the bottom layer, giving A6,/At =

Qu/Az and AU,/At = F/Az. Neglecting other forcings such as radiation and Coriolis force
leaves only the bottom layer altered:

Profile B:

Given: Grid index = 1 2 3 4 5
z (m) = 50 150 250 350 450
8 (°0) = 162 15 15 16 18
U(s) = 4.1 5 5 7 6

Notice that only the bottom one grid box has changed so far, because we have not yet
applied the transilient turbulence to mix these heat and momentum changes higher in the
mixed layer.

Next, assume that there is turbulent mixing during the 10 min period as specified by
the transilient matrix below:

GG= 1 2 3 4 5)
0590 0236 0118 0056 0.000 i=1)
0236 0590 0118 0056 0.000 )
At=10min) = |0118 0118 0708 0056  0.000 3)
¢ A=10min) = 0sc 0056 0056 0832 0000 @
0.000 0000 0000 0000 1.000 )

Starting with Profile B, (a) determine and plot the final profile (let's call it Profile C)
after turbulent mixing; and (b) determine and plot the fluxes of heat and momentum,

Solution to part (a): First, it is easy to verify that the transilient matrix is a valid
one, with each row and column summing to one, and no negative elements. Next, to
illustrate the solution, look at the second row of the transilient matrix. The second row
tells us about fluid that is mixing info the second grid box. For our case, it says that
23.6% comes from box 1, 59% stays in box 2, 11.8% comes from box 3, and so
forth. Thus, the new state of box two after mixing is:

52 = 0.236-(16.2) + 0.590-(15) + 0.118-(15) + 0.056-(16) + 0.000-(18) =15.34 (°C)
and

U, =0.236-4.1) +0.590(5) +0.118(5) +0.056-(7) +0.000-(6) = 4.90 (m/s)

In general we can set up the problem as a matrix multiplication, with the answer indicated
below for potential temperature. The same procedure can be used for winds.
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15.76 0.590 0.236 0.118
15.34 0.236 0.590 0.118
15201 _ |0.118 0.118 0.708
15.90 0.056 0.056 0.056
18.00 0.000 0.000  0.000
Profile C: The state of the air after 10 minutes.
Given: Grid index = 1 2 3 4
z (m) = 50 150 250 350
6 (°C) = 15.76 15.34 15.20 15.90
U@m/s) = 458 490 501 6.61

0.056 0.000}|16.2
0.056 0.0001}15.0
0.056 0.000{}15.0
0.832 0.000}[16.0
0.000 1.0001}!18.0
5

450 (At the box centers)

18.00

6.00

Discussion of part (a); The new temperature in grid box 5 has not changed,
because the fifth element along the main diagonal of the transilient matrix equalled one.
Thus, 100% of the air in box 5 stayed in box 5, and no air was mixed in from other
boxes. The initial and final potential temperature and wind profiles are plotted in Figs
6.10a & b.

Some of the warm air from the surface has been mixed up into the mixed layer,
resulting in warming of the mixed layer and a reduction of the static instability between the
bottom two grid points. Also, there appears to be some entrainment into the top of the

mixed layer, resulting in an increase in mixed layer depth.

Solution to part (b): For example, the flux at z=100 m (i.e., at k=1, between grid
points 1 and 2) can be found using recursive relationship (6.8.4b):

w'9'(1)

w'e'(1)

N
— Az
W9(0)+E c

=1

0

+ (100 m/ 600 s):[0.590:(16.2-16.2) + 0.236-(16.2-15.0) +

0.118-(16.2-15.0) + 0.056-(16.2-16.0) + 0.000-(16.2-18.0) ]

0.0726 K-m-s1)

and for momentum

uw'(l) =

0 + (100 m/ 600 5)-[0.590-(4.1-4.1) + 0.236:(4.1-5.0) +
0.118-(4.1-5.0) + 0.056-(4.1-7.0) + 0.000-(4.1-6.0) ]
- 0.080 (m%s2)

Similarly, the turbulent fluxes between the other grid points can be found:
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=@ U (t=0)s
=M= y (t=10 min)

«@- W8 (molecular) ~®- U'W (molecular)
-3~ W3 (turbulence) ~Z~ U'W (turbulence)
400+ == W (total) 400 | =w= UW' (total)

w8 (K m/s) u'w' (m?/s?)

Fig. 6.10 Examplesof: (a) potential temperature evolution (b) mean wind
evolution, (c) heat flux, (d) and momentum flux sourdings using
transilient turbulence (Stull, 1987a).
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Gridindex = 0 1 2 3 4 5
z (m) = 0 100 200 300 400 500
w'0'Km/s)= 0 0.0726 0.0160 -0.0169 0.0 0.0
uw(mis?) = 0 -0.0802 -0.0634 -0.0644 0.0 0.0

Discussion of part (b): These flux profiles are plotted in Figs 6.10 ¢ & d. In
addition to the turbulent fluxes in these figures, the molecular surface fluxes are also
plotted. The total flux at any height is the sum of the turbulent and molecular fluxes, as
indicated by the solid lines. It is this total flux that is usually plotted as the effective flux
in the meteorological literature (see Chapter 7).

The heat flux profile shows the expected decrease of flux with height characteristic of
convective mixed layers, with a negative value in the entrainment zone, The momentum
flux profile is negative at all heights, implying a loss of momentum down to the ground.

6.8.6 Closure Parameterization

Like other turbulence closure schemes, a parameterization must be devised for the
unknowns: the cjj coefficients. Two closure methods have been used in the literature: an

a-priori method that utilizes knowledge or assumptions about the turbulence spectrum
or about the frequency distribution of turbulent velocities; and a responsive approach
that allows the transilient coefficients to change in response to changes in the mean flow.
The a-priori method is used with the spectral diffusivity nonlocal closure described at the
end of this Chapter. The responsive approach will be described here.

The underlying concept behind the responsive closure is that if the fluid is made
statically or dynamically unstable, then turbulence will form to partially undo the
instability by mixing. This is analogous to LeChatelier's Principle of chemistry.

This principle is carried into the numerical implementation of transilient turbulence
theory, as sketched in the time line of Fig 6.11. Each timestep is split into two parts, one
part that includes all the nonturbulent dynamics, thermodynamics, boundary conditions,
and internal (body) forcings. The second part is where the transilient turbulence closure
algorithm responds to the instabilities in the mean flow field by causing mixing, where the
amount of mixing is given by transilient coefficients that are parameterized to (partially)
undo the mean flow instabilities. This two step process was illustrated in the previous
example, where the surface fluxes were first applied to destabilize the flow, and then the
transilient mixing was applied.

The following responsive parameterization (Stull and Driedonks, 1987) for c;; is
based on a dimensionless mixing potential between grid points i and j, Yj;:

fori+j (6.8.62)
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Part 2: Turbulent stabilization.

0000
R TR T AT Time

Part 1: Destabilization of the flow.

Fig. 6.11 Timeline showing the two parts of the responsive parameterization.
Part 1 consists of the dynamics, thermodynamics, body forcing and
boundary conditions. Part 2 consists of the transilient mixing to
reduce any flow instabilities that might have developed during part
1. After Stull (1987).

where Yl is a scalar norm of matrix Y, and:

N

= 1- D¢ (6.8.6)
=l
j#i

to satisfy the conservation constraint discussed earlier.

The potential for mixing depends on the instability of the flow, so a natural starting
point for the parameterization of Y is the TKE equation. Start with (5.1b), neglect the
turbulent transport and pressure correlation terms for now, allow for an arbitrary
coordinate direction, integrate over time, and then normalize the resulting equation by
dividing by the TKE. Next, and most importantly, we hypothesize that the result can be
interpreted nonlocally, where gradients can be expressed as differences across finite
distances. Let Ay refer to a nonlocal difference between grid points i and j; for example,

AU= T - U,. We can finally write the equation for potential for mixing between grid
points i and j, for i=j:

AT ]
o

Y. =
Y ('Aijz)z

- - - A,
{(A,.U)2+ A, V) - g(A.8 )—( i _ DyAt  (6.8.6¢)
1] 1 v (ech) T

[s]

The first two terms on the right represent the mechanical production, the third term is the
buoyant production/consumption, and the last term represents dissipation.

The Y}; values found from (6.8.6¢) are the preliminary off-diagonal elements of a Y
matrix. We recommend that the mixing potential for eddies of any size be no less than the
mixing potential for larger size eddies. In other words, if there is strong mixing between
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100 m and 500 m, then there is at least as much mixing between 200 m and 300 m. It
would be ridiculous to allow turbulence to mix fluid between two distant points across an
interior region that was nonturbulent. Thus, we make the additional requirement that the
elements of the Y matrix increase monotonically from the upper-right and lower-left
corners toward the main diagonal. Any of the preliminary elements that do not satisfy this
last requirement are increased to equal the largest elements further away from the diagonal,
The elements along the main diagonal are set equal the the largest immediate element on
the same row, plus a Y,.; value that represents the potential for subgrid scale mixing
within one box.

If we assume that the mixing between i and j equals the mixing between j and i, then
both the mixing potential matrix and the transilient matrix are symmetric. This reduces the

degrees of freedom from (N? - N) to (N? - N)/2. By using the mixing potential
parameterization just described, we further reduce the degrees of freedom to just four,
based on the four empirical parameters. Their values are recommended (based on
atmospheric simulation tests) to be T, = 1000 s, Dy = 1 (dimensionless), the critical
Richardson number is R = 0.21, and Y, ;= 1000 (dimensionless).

Finally, if each row of the final mixing potential matrix is summed, the scalar norm is
set equal to the maximum sum. Namely,

N
Yl = max Z Y (6.8.6d)
1 j=1

Fig 6.12 shows an example of a boundary layer forecast made with the
parameterization above. The growth of an entrainin g mixed layer is clearly evident, even
though no explicit mixed layer or boundary layer specification was imposed other than the
surface heating that acted on the bottom one grid point. The corresponding wind and flux
forecasts for this case are shown by Stull and Driedonks (1987).

3000 |

T T T T T T T T T T T T

2000

1000

16 = Local Time

z{m)

1 4 4 4 1 1§ 1 1 4 & 5 4 I

DY I R MR D
15

1
25

Fig. 6.12  Transilient turbulence simulation of the potential temperature
profile evolution at Cabauw, Holland, for 30 May 1978. After Stull
& Driedonks (1987).
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6.8.7 Continuous Form

The analytical form of transilient turbulence theory can be written as

3 E@z)
at

= TM + Prod. - Loss (6.8.7a)

where Prod. and Loss are other production and loss terms, respectively, given by the
conservation equations. The turbulent mixing (flux divergence) term, TM, is:

2.‘
™o = [[REo-Ee)] 1 ez o (6.8.7b)
=1,
where Yp(z,Z,t) isa transilient rate coefficient (units of s'm!) for mixing between level
Z and level z. To help understand Yp(z,Z,t), we note that the kinematic mass flux of air

moving from Z+Az to z+Az is M = [ ¥z,Z,1)dz dZ. The top and bottom of the turbulent
domain are at z=z, and z, respectively.

A typical shape for Yr(z,Z,t) is shownin Fig 6.13. This graph is similar to a graph

of the magnitudes of the ¢;; elements along any one row of the transilient matrix, where
i=j (main diagonal) corresponds to z-Z=0.

-2
5 Rt

Fig. 6.13 Transilient mixing rate
coefficient, ¥, as a
function of separation
distance between the
point of interest (z) and
other points (Z) within
the turbulent domain.
After Stull (1984).

The turbulent kinematic flux, w'E" = F(z;) at location z, is given by:
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7 7
E'(zl,t) = -[ _[ [E@t)-E @] Y(2Zt) dZ dz  (6.8.7¢)
1=z, Z=1,

By definition, the turbulent flux at the top and bottom of the turbulent domain is zero.

6.8.8 Example of Continuous Form

Problem: Given the idealized transilient rate curve shown in Fig 6.14a, and the
initial sounding of potential temperature shown in Fig 6.14b, calculate the initial tendency,

96/0t from (6.8.7a), neglecting other production and loss terms. The initial potential
temperature sounding below the temperature jump (i.e., at z<0, assuming the origin is

placed at the height of the jump) is constant and equal to §D, while above that height the

temperature is 6,+ A 8. The transilient rate curve is zero everywhere, except Yp =
(A/LYL -Z +z) for 0 < (Z-z) < L, and Yy = (A/LY(L + Z - z) for -L < (Z-2) < 0.

*3

Fig. 6.14 Example of the (c) initial temperature tendency that results from
nonlocal mixing given by the (a) tent-shaped transilient rate curve
acting on (b) an initial mean temperature jump. (After Stull, 1984).

Solution: The wransilient rate curve indicates that the largest eddies (i.e., large values
of IZ - zI') present for this case are of size L. Thus, for z < -L and z > L, mixing can
not change the temperature because the smaller eddies (less than L) are mixing air of the
same temperature. Air of different temperature from the other side of the temperature

jump is out of reach of these small eddies. Thus, by inspection we can write the first part
of our answer:
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For z<-L and L <z:

0 z>L
§—~=O for {zq_L

For -L <z <0:
We must integrate (6.8.7b), using the initial condition that é{Z) - §(z) equals 0 for Z

<0, and equals AB for Z > 0. Thus, the initial (t=0) tendency of potential temperature is:

_ 7
20 — =
Bo=m™ = [[6@ -8 ]|4@s a
7=z,
0 2+l T
A AL - Af -
- = j[01 vz o+ - '[[Ae] C-Z+2dZ o+ T j[AG] 0) dZ
Z-zb Z=0 =2+
A A 2
= I (L+z)

For 0<z<L:
Integrating in a similar manner we find:

06 A AB 2
o =5 E2

Discussion: These initial tendencies are plotted in Fig 6.14c. Just above the
temperature jump the tendency is negative, indicating cooling. Just below the jump, there
is warming. The net result is that turbulence is tending to round the corners of the
temperature sounding by mixing cooler air up and warmer air down. Also, these initial
tendencies are nonzero a finite distance away from the jump, something that can not be
modeled with a local closure theory such as K-theory.

6.8.9 Closure Parameterization of the Continuous Form

In order to close the continuous form of transilient turbulence theory, we need to find

an analytical expression for Y1 as a function of z, Z, and t. One easy way to do this
employs the a-priori method of closure: namely, assuming some turbulent state of the air
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rather than letting it respond to changes in the mean flow. For example, given the
spectrum of turbulence with an inertial subrange, it can be shown (Stull, 1984) that

Yo (2Z) = €7 1Z-217P (6.8.9)

where € is the TKE dissipation rate. Many other closure parameterizations can be
formulated that lead to interesting theoretical results.

6.9 Nonlocal Closure — Spectral Diffusivity Theory

We saw in Section 6.4.1 that K-theory can be used to approximate a flux as w'§' = -K
aE/az. When this is put back into the conservation equation for a passive tracer, a@at =

9w 'E'/dz, we arrive at the diffusion equation &t =K 02E/322, where we have

assumed that K is not a function of z for simplicity. Suppose that K varies with eddy size
(Berkowicz and Prahm, 1979; Prahm et al., 1979; Berkowicz, 1984). If we let

x=wavenumber of the eddy, then we can spectrally decompose the diffusion equation to
be

92 (x) (6.92)
oz?

3 (x)
ot

= K(x)

where K(x) is called the spectral turbulent diffusivity.
By integrating this equation over all wavenumbers, we again arrive at the forecast

equation for E:
a_%(;ﬂ = TM + Prod. - Loss

where the turbulent mixing term is now

TM(zt) = 5 . (6.9b)

and where the integration is over the domain of turbulence. The similarity of this to

(6.8.7b) is striking, E(z,Z,t), which has units of m/s, 1is called the furbulent
diffusivity transfer function, and is defined by:
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— 1 -
2zt = - [Kxo ewfice-2)]d (6.9¢)

where i is the square root of -1 (see Chapter 8 for more details about Fourier analysis),
and where the integration is over all wavenumbers, from K = -eo to oo .
To use this nonlocal approach, we must parameterize either K(x) or Z. Berkowicz &

Prahm suggested that larger eddies are more effective at causing diffusion (i.e., have
larger K)) than smaller eddies (see Fig 6.15). Based on this concept, they suggested that

KO
K(K) = ——>—0 (6.9d)
| 1+B,x*? }

where the two parameters, K, and B, are both assumed to be proportional to the 4/3
power of the wavelength at the peak in the TKE energy spectrum. In other words, this is
an a-priori approach, where some knowledge of the spectrum of turbulence is assumed.
K, has units of m? s, while B, has units of m™?. This spectral dependence of K yields

a plot of Z(z,Z,t) vs. (z-Z) that looks very similar to the plot of ¥(z,Z,1) in Fig 6.13, with
apeak of Zat z-Z =0 and tails that approach zero at both sides.

a

larger sddies smaller eddfs_s—
Fig. 6.15 Spectral diffusivity K(x) as a
function of wavenumber x.

After Berkowicz and Prahm
1978).

When spectral diffusivity theory is used to predict the spread of smoke puffs within a
homogeneous turbulent environment, the result shown in Fig 6.16 is a slow dispersion
rate initially while the puff is small. Later, when the puff is larger, it grows at the same
rate as would be expected for normal (nonspectral) K-theory. In the figure, B =0
corresponds to the normal K-theory dispersion, while B, =3 m?3 is the dispersion with
spectral diffusivity,
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Zy

K-theory \
Spectral Diffusivity Theory

| Fig. 6.16 Top and bottom edges of a
passive fracer puff with
downwind distance, for
K-theory and spectral
diffusivity theory. After
Berkowicz and Prahm (1979) ]

The initial slower dispersion rate and non-Gaussian distribution of tracer concentration
is common to both transilient theory and spectral diffusivity theory. Although some
experimental evidence supports these results, they differ from those of statistical
dispersion theory . :
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£.11 Exercises

Which turbulence closure scheme would be most appropriate for the atmospheric
boundary layers in each of the following applications? Why?
a) Nested Grid Model (NGM) numerical forecast model (or other operational weather
forecast model).
b) Diffusion of smoke from a tall stack.
¢) Mesoscale numerical forecast model for the interior of continents.
d) Sea-breeze numerical forecast model for your favorite coastline.
¢) Air flow through the turbine disks in a jet engine.
) 2-D numerical thunderstorm model.
g) Global climate model
h) Numerical model of individual thermals in the BL.
i) Study of the air flow over complex terrain for wind energy siting.
j) Study of heat, moisture, and mass transfer over a ginseng crop.
k) Forecasting minimum daily temperatures at your town.
1) Study the moisture budget of a hurricane.
m) Study the turbulence structure of the Venusian atmosphere.
n) Forecasting the nocturnal jet.
o) Numerical simulation of the interaction between ocean currents and the
atmosphere.
2) Very briefly define the following, and comment or give examples of their use in
micrometeorology:
a) Ekman spiral
b) Turbulence closure problem
c) K-theory
3) Write a correlation triangle for third-order closure similar to the lower-order triangles in
Table 6-2.
4) What is the closure problem, and how does it affect the study of turbulent boundary
layers?
5) Given:
z 12 8 2 0l=z, (m)

5 300 301 303 308 (K)
54 50 34 0 (m/s)

cl

Use first-order closure to find w'8' and w'w' at z=z,andatz=10m.

6) What advantages and disadvantages are there for using one-and-a-half-order closure,
as compared to first-order closure?

7) Use K-theory to find the heat flux as a function of height, given a potential temperature
profile of the shape 6 =8, - a In(z/z,), where 8, =300 K at z=z,=1mm, and a=
5K. Assume that K=k zu, withu, =0.1 m/sand k=04 .
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8) What order closure (zero, first, 1 1/2, second, third) is used in the derivation of the
Ekman spiral?

9) Can transilient turbulence closure simulate K-theory diffusion? Can K-theory simulate
looping smoke plumes?

10) For an eddy diffusivity of K, =2 m?s"! and a geostrophic vorticity of 0.0001 s-1
with an average tangential velocity of 8 my/s, calculate the vertical velocity at Madison,
Wisconsin caused by "Ekman pumping" at the top of a 500 m thick boundary layer.

11) What is a common first-order closure method?

12) Given the following matrix of transilient coefficients:

0.1 09 0. 0. 0.

0.2 005 075 0. 0.
4 0.25 0. 005 0.3 0.4

0.2 0. 0. 0.2 0.6

a) Verify that mass and state are conserved, and that entropy increases.
b) Given an initial state of pollution concentration in the boundary layer of

Grid index (i) z(m) S (g/m?3)
1 100 500
2 300 0
3 500 0
4 700 0
5 900 0

Forecast the pollution concentration at each of these heights every 10 min from
t=0t0 t=00 min. (Assume a 1km thick boundary layer, with 5 grid points
centered at the heights indicated above, with Az = 200 m.)

¢) Plot a time height diagram of your results from (b), and draw isopleths for S = 90,
110, and 130 g/rn3. Comment on the behavior of the pollutants, and on what type
of boundary layer (ML, NBL, RL) is probably there.

d) Find and plot the flux profile associated with the first and second timesteps.

e) If a timestep of At=30 min were desired instead, calculate the new matrix of
transilient coefficients,

f) Using the answer from (b), make a new forecast of pollutant concentration from t=0
to t=90 min, using At=30 min and the same initial conditions as before. Compare
your answer to that of part (b).

g) If the rows of the transilient coefficient matrix given at the top of this page were
switched, such that the bottom row is at the top, the second to the bottom becomes
second from the top, etc., then comment on the nature of smoke dispersion.

13) Given the following transilient coefficient matrix

0.7 0.2 0.1 0.0

_ 02 07 02 0.1

¢; (At=10 min)= 0.1 02 07 02
0.0 0.1 02 0.7

a) What is wrong with this matrix?
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)

b) Make a forecast (only out to t=10 min) to demonstrate your conclusions from part
(a). Start with an initial tracer concentration distribution given by

index concentration
1 0

2 0

3 100

4 0

14) Let K =5 m%! = constant with height. Calculate and plot
a) u'w' b)w'e’

from z=0 to 50 m using the data from problem 26 of Chapt. 5.
15) a) Using the answers from problem (14) above, find the initial tendency for virtual

potential temperature (ae_v,far) for air at a height of z=10 m.

b) If this tendency does not change with time, what is the new é_v at z=10 m, one

hour after the initial state (i.e., the state of problem 26, Chapt. 5)?
16) Verify the Ekman boundary layer solutions by plugging them back into the original
differential equations, and by checking to see if they satisfy the boundary conditions.
17) Given K_=k z u, . Solve for U as a function of height in the SL.
12) For 1.5-order closure, indicate whith prognostic equations are needed to forecast

2 . . . .
8'“? To save time, write only the storage term for each equation used. Hint, one of

the equations is d 6 or=...
1%) Given the following matrix of transilient coefficients:

index

03 025 025 02 1

_ 025 03 025 02 2

¢ (At=30mim= | 025 025 03 02 3
02 02 02 04 4

a) Does this mairix satisfy mass and state conservation? Why?

b) Describe the nature of mixing (e.g., overturning, small-eddies, no turbulence, well
mixed, sub-domain of turbulence, etc.)

¢) Given the following initial concentrations, find the new concentrations after 30 min.

index concentration
1 100

2 100

3 200

4 0

d) Find the flux profile for this one timestep, given Az = 100 m.



248  BOUNDARY LAYER METEOROLOGY

20) Given the following transilient matrix:
r

r—miq
= kD L b
[ -

o
Vo OOoO

C; (At = 10 min)=

ONMOoOOo
=t
ONo0O
= R =

b =
oNooOo

1

a) Fill in the missing elements.

b) In the interior of the turbulent domain, is the turbulence homogeneous? Is it
isotropic (in one dimension)?

¢) Comment on the kind of turbulent boundary layer parameterized by the matrix
above? (That is, what is the nature of the turbulence: diffusive, convective,
other...)

d) Given the following initial distribution of pollutant concentration (8, in units of
micrograms per cubic meter) at each of six grid points, forecast the concentration
at t=10, 20, & 30 minutes using a At=10 min timestep.

Grid Index z(m) S
1 50 100
2 150 0
3 230 0
4 350 0
5 450 0
6 550 0

Check to be sure that pollutant mass is conserved at each time.
¢) Find the flux as a function of height for the first timestep.
t) Comment on the centroid of pollutant concentration, and how it moves with time.
g) After 100 tmesteps, qualitatively discuss the anticipated vertical distribution of
pollutants. (i.e., you need not make an actual forecast).
21) Given the following transilient matrix:

07 0 0.2
0.1 06 ?
? ?

?

?

0.1 02

a) Fill in the missing elements to yield an allowable matrix.

b) Given an initial tracer distribution of 100 mg m™ at the lowest grid box (i=1), 10
mg m- in the top grid box (i=4), and no tracer elsewhere, find the tracer
distribution after 15 minutes.

¢) Was tracer amount conserved? How do you know?

d) Does the transilient matrix represent homogeneous turbulence?

€) Does the transilient matrix represent isotropic turbulence?

22) If one considers only the momentum equations, how many total equations and
unknowns (only of velocity correlations in this case) are there for fourth-order

closure? (Hint, look at Table 6-1.)

0.1
. 0.2
Sy (At =15 min)= ?
0.3
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7%} Given an initial pollutant concentration distribution of

index z{m) concentration
1 10 0

2 30 0

3 50 0

4 70 100

5 90 0

06 04 0 O OW
04 03 03 0 0
c.. (At=5min) = | 0 0.3 0.6 0.1 Ol
g 0 0 0.1 09 0
| 0 0 0 0 1J

2) Find the new concentrations §; at t= 10 min.
5} When would pollutants first reach the lowest grid box?
o) Is there a way to find the concentradons at t= 10 min in just one timestep, starting
from the concentration at t=07
d) Find and plot the flux profile.
74} Does the following closure method obey the rules of parameterization?
a) The first-order closure of equation (6.4.1b).
b} The one-and-a-half-order closure of equation (6.5b) for heat flux,

¢) The second-order parameterizations by Deardorff for 8'u i’u}.' {see Table 6-5).

d) The second-order parameterization by Rotta for the pressure correlation (see Table
6-5).

Without using the assumption that the mixing length is proportional to height above
the ground, rederive the mixing-length expression for moisture flux for the case where
a solid boundary limits the maximum size of eddies. Hint, use a statistical approach
with a probability distribution that is zero beyond the solid boundary.

Given the heat flux profiles in Figs 3.1, 3.2, and 3.3, and the mean profiles of
potential temperature in Figs. 3.4 and 3.5:

a) calculate the value for Ky as a function of height for :
(1) Flight 2
(2) Flight 3
(3) Flight 13
b) Which parameterization in Table 6-4 best fits the calculated K values from part (a)?
~7) For an eddy viscosity of 10 m?s’!, and a pressure gradient of 0.2 kPa / 100 km in the
atmosphere, plot the Ekman spiral winds as a function of height, and find the Ekman
layer depth at:
a) Bergen, Norway
b) Madison, Wisconsin
¢) Christmas Island (in the Line Islands)
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28) Suggest a parameterization for u, ujuu

29) Given the Y and 6 curves in the following figure, calculate the initial tendency (TM)
due to turbulent mixing using the continuous form of transilient turbulence theory.

zZh AZ-2
nl Lae_ oL
-L
| » 1 >
Bo 8 0 Yo ‘{T'

30) Use spectral diffusivity theory to solve problem (29), using K, =2 m2s1 and B,=3.

(i.e., do not use Y for this case). Also, plot Kvs. k.
31) Given the following heat flux and potential temperature gradients, find and plot Ky vs
z/z; . Comment on the meaning of Ky at each height.

2/z; w '8’ (K m/s) 96/0z (K/m)

0.0 0.20 -0.020
0.2 0.15 -0.005
0.4 0.10 -0.001
0.6 0.05 0.001
0.8 0.00 0.005

1.0 -0.05 0.020



