Spectrum analysis is a statistical tool that we can employ to probe further into the
workings of turbulence. By decomposing a series of measurements into frequency or
wavenumber components, we can discover how eddies of different time and space scales
contribute to the overall turbulence state.

In this chapter we review the computational techniques for the spectrum analysis of
measured data. We also introduce related tools such as the autocorrelation function,
structure function, and periodogram. Also discussed is the concept of a process
spectrum, where mixing processes rather than turbulence states are decomposed into a
spectrum of scales. Theoretical spectral decomposition of the TKE equation is briefly
covered.

8.1 Time and Space Series

When measurements are taken at a fixed point over a period of time, the resulting
series of data points is called a time series. Similarly, measurements at a fixed time
over a series of locations in space is called a space series. Both series give
measurements of a dependent variable such as temperature or humidity as a function of an
independent variable, such as time, t, or location, x. Because of this similarity, we will
discuss the two types of series interchangeably, and sometimes will use the generic name,
series.

295
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This review will be limited to discrefe series; namely, measurements taken at
regularly-spaced intervals that lead to a finite number, N, of data points. A discrete series
represents a sample of the true, continuously-varying signal. Examples of discrete
series include temperature or tracer concentration measurements made every second during
the course of an hour at a fixed location such as an instrumented tower, or measurements
of humidity taken every meter from an aircraft flying on a 25 km flight leg.

If A(t) represents the true signal as a continuous function of time, then we could
sample that signal at evenly-spaced times: t=t,, t=t AL, t=1+2AL, t=1+341, ...,
t = t,+(N-1)At, where the total number of data points is N. We will use an index, k, ta
denote the position within the time series. The k™ data point corresponds to time t,=t, +
kAt, where 0 £k < (N-1). Sometimes the value of variable A at time 1 is represented
A(ty), but usually the shorthand notations A(k) or Ay is used. We will assume that the
sampling interval is At, with no missing data and no changes of At within any one
series. The fotal period of measurements is P = NAt, in the sense that each of the N
data points represents a sample within an interval At.

8.2 Autocorrelation |
|

In section 2.4.5 we discussed the covariance and the correlation coefficient, which‘
quantify the amount of common variation between two different variables. Extending thisj
idea, we could also ask about the degree of common variation between a variable (A)
sampled at time t and that same variable sampled at a later time, t+L, where L is the time’
lag. Such a correlation of a variable with itself is called autocorrelation, Ry o(L).

Consider a 12 hour time series that has a simple sinusoidal variation of unit amplitude
with a 4 hour pericd. The wave equals 1.0 at regular intervals of 1, 5, and 9 h. Also, the
wave equals -1.0 at 3, 7, and 11 h. In fact at ANY time, t, the series is perfectly
correlated with itself (i.e., has the same value) at exactly timest+4h,t+8 h,and t + 12
h. Similarly, we can show that the wave is negatively correlated with itselfat t+2h, t+
6h, and t + 10 h. We have, in essence, just determined the autocorrelation for this series
at lags 2, 4, 6, 8, 10, and 12 h.

If our time series consists of a wave that varies in frequency during the duration of the
series, then a wave at t; might be perfectly correlated with itself at t; + 4 h, but the value
at t, might not be perfectly correlated with the value at t, + 4 h. When averaged over all
possible pairs of data points with 4 h lag in this series, the result might NOT give a large
correlation value at all.

In other words, the autocorrelation measures the persistence of a wave within the
whole duration a time or space series. The capability to determine persistent waves or
oscillations within a series is particularly valuable because the regular variation might be
associated with a physical phenomenon such as an eddy. Alternately, when the
autocorrelation becomes close to zero, it tells us that there is a random process (e.g.
turbulence) occurring with no persistent or regularly-recurring structures.
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8.2.1 Definition

The exact definition for the discrete autocorrelation is:

N-j-1

Z[(Ak - Kk) (Ak+j B K1c+_i)-_1
R = k=0 8.2.1
an) N-j-1 12 rNja 12 @212
- 2 - 2
ICOEE W I DI
k=0 k=0

where two different mean values are used depending on which portion of the whole series
is being considered:

. Nj-1 . N-j-1
A = NG ;Ak and Ay = N ZAk+j

Z

and where lag =L =j At. Notice that each of the square bracket terms in the denominator
acts like a standard deviation over the portion of the data set being used.

We can approximate (8.2.1a) if it is assumed that the data is sufficiently stationary (or
homogeneous for space series) that the mean values over each portion of the series is
equal to the overall series mean, and that the standard deviations from each portion equal
the overall series standard deviation. This results in:

R L = m
AAaPpmx 02
A

(8.2.1b)

This simple approximation works satisfactorily for small lags (i.e., small j) and large N,
but is inadequate otherwise.

Autocorrelations are usually calculated for a range of lags, and the result plotted on a
graph of R 4 vs L. For the special case of zero lag, the autocorrelation is identically equal
to unity [Ry 2 (0) = 1.0] for all signals. The autocorrelation of an irregular signal such as
turbulence approaches zero as L approaches infinity, although it may appear as damped
oscillations about zero while L is small. Also, as the lag increases, the percentage of the
time series used to calculate R, (L) decreases. As a result, the statistical significance of
R, decreases as lag increases, making R, 4 unrepresentative when j > (IN/2).

Sample autocorrelation curves for convective turbulence measured at different heights
in the ML are shown in Fig 8.1 (Deardorff and Willis, 1985).
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Fig. 8.1  Autocorrelation of vertical velocity in a ML as a function of
separation distance r (spatial lag) and hei? ht z, based on the
jaboratory simulation of Deardorff and Willis (1985).

:
8.2.2 Example
Problem: Given the following series of measurements of relative humidity made

every 3 h over a 96 h period (4 days) at a fixed point. Find the autocorrelation for relative
humidity, Ry, (L), for time lags ranging from O to 48 hours, and plot the result.

Data:

Relative humidity (percent)
Day 1: 49 46 44 45 52 59 61 57
Day 2: 53 50 50 52 55 55 54 47
Day 3: 41 36 32 33 36 41 40 37
Day 4: 34 31 29 32 38 45 48 45

As can be seen in a plot of the time series (Fig 8.2a), there are regular diurnal cycle
oscillations superimposed on longer period trends.

Solution: There are 32 data points, with At = 3 h. We must solve (8.2.1) 17
different times, for j =0 through j = 16. The resultis:

L) Ryp LM Rps L® Rpm LO) Rym L0 Rpm LB Rpg
0 1.00 9 0.35 18 0.49 27 0.34 36 -0.13 45 0.40
3 0.67 12 0.34 21 0.53 30 0.09 39 -0.04 48 0.58
6 0.47 15 0.40 24 0.50 33 -0.12 42 0.17

Discussion: Looking at Fig 8.2b, we see that the autocorrelation starts at 1.0 at zero
lag, and quickly decreases. As is sometimes the case with weather data, the diurnal cycle
shows up as an oscillation in the autocorrelation function with a 24 hour period. We
could have anticipated this, because 12 h from any time, the humidity time series is in the
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opposite side of its oscillation. If the humidity is high in the early momning, then 12 h later
itis drier. If the humidity is low in the afternoon, then 12 h later it is more humid. On the
average, humidity is negatively correlated with itself 12 h later. Over a 24 h period,
however, like comparing a morning humidity with the next morning's humidity, or the
afternoon humidity with the next afternoon's humidity, we anticipate a positive
correlation.
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Fig. 8.2 {a) Plot of the timeseries of relative humidity over a 4 day period.
{b) Plot of the exact autocorrelation, Reu, ru,computed from
{8.2.1a) and the apporximate autocorrelation, R approx., COMputed
from (8.2.1b). For lags greater than 48h the autocorrelation is not
statistically reliable.

= —— e

The initial drop off of the autocorrelation from 1.0 to smaller values is a measure of
the accuracy of a persistence forecast. Namely, if we forecast the humidity 3 or less hours
from now to be the same as the present humidity, we would probably be close to correct
because the autocorrelation is 60% or higher. Longer forecasts would be less accurate.
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8.3 Structure Function
8.3.1 Definition

An alternative statistic to view common variation is the structure function,
DAA(IA)
N-1 2

1\ : ‘
D, D) = N : O[Ak Ak-!—j] (8.3.1a)

For a time series, L= j At is the time lag, while for a space series L = r = j Ar represents
the spatial separation, r, between the two measurements. The structure function uses the
difference, rather than the product, of two different points in the series. The structure
function has units of A2 like variance, rather than being dimensionless like the
autocorrelation.

For zero lag or zero separation distance, the structure function is idendcally zero. As
L or r increases, so does the structure function for most turbulent flows. Within the
inertial subrange of turbulence, similarity arguments (similarity theory is reviewed in
Chapter 9) suggest that:

Daal)=c,2 T 23 (8.3.1b)

where C2 is the structure function parameter for variable A. The four most
common structure function parameters are C . for temperature, C,2 for velocity, cqz for

moisture, and Cret? for the index of refraction, ngef. These parameters aré not

ef
dimensionless, but have units determined by the units of A and r to make (8.3.1b}
dimensionally consistent (see example below).

Remote sensors such as radar (microwaves) or sodar (sound) can receive returns from
clear air because some of the transmitted signal is scattered off of refractive index|
variations in the atmosphere. For example, the radar reflectivity 1| (radar cross section per
unit volume) in clear air (no rain or other hydrometeors) is:

-1/3

n = 0.38 CI‘I.IBEZ lR

(8.3.1¢)

where lR is the wavelength of the radar. Since the index of refraction is related to

temperature, moisture, and pressure o varying degrees depending on the type of remote
sensor, equations can be derived relating C rel? to Cpra, cqz and Cy2 (see review by

Lenschow, 1986). Thus, the magnitude of the returned signal 1) givesc_ o from
(8.3.1¢), which yields estimates of Crz » cq; and Cy2- Sample profiles of Cr2 and ¢
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zre shown in Fig 8.3.

1.0 T T 1.0
z Convactlve z Stable
z—i h

o1k 0.1 -

0.01 L L 0.01 1
109 107 102 102 109 107 102 103
23 23 2
cr2zy /(842 c:h?¥¥ /(g3
1.0 | I 1.0 T
Convective Stable

z F4
z [

0.1 ~ 01+ -

0.01 ; L
109 102 700 %040 107 10 102
2
c.22% /1wl c,.h? /ul
Fig. 8.3 Profiles of c;2 andc,2 in convective and stable conditions, normalized
by mixed layer and surface-layer scaling parameters. After Neff and
Coulter (1988).

Remote sensors can yield a variety of quantitative boundary layer information,
utilizing the structure function statistic. We can estimate dissipation rates because
similarity arguments suggest that:

Cy2 =2¢%3 and Cre = 32898'”3 (8.3.1d)
for the inertial subrange, where a2 is a constant of about 3.0 (estimates in the literature

range from 2.8 to 3.2). Wyngaard, et. al. (1971) demonstrate that surface turbulent heat
flux in the ML can be calculated from Cpa

28 473
g z
Co = 2.68 (%) . (W'B' ) (8.3.1e)

Wyngaard and LeMone (1980) further suggest that the magnitude of the temperature and
moisture jumps across the capping inversion at the top of the ML can also be measured
from C2 and °q2 .
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8.3.2 Example

Problem: Given the same time series of relative humidity (th) as in example 8.2.2,
calculate the structure function for lags from 0 - 48 hours.

Solution: Using (8.3.1a), the structure function values (in units of relative humidity
percentage squared) are:

L (h) Dyn;rn L(h) Dyprn L(h) Dyn,rn L(h) Dpprn
0 0 15 153 27 183 39 301
3 78 18 134 30 243 42 303
6 124 21 127 33 299 45 326
9 155 24 142 36 316 43 377
12 162 '

—10
Lag (h)

Fig. 8.4 Structure function, Dm, m, as a function of time lag for the data in
example 8.3.2. (a) Linear graph. (b) Log - log graph.

Discussion: Fig 8.4a shows the resulting variation of the structure function on a
linear scale. A similar plot on log-log graph is given in Fig 8.4b. The straight line on this

latter graph is given by D ch = O 127, with the structure function for relative humidity
¢, =35(% 2p2By,
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8.4 Discrete Fourier Transform

From Fourier analysis in calculus we remember that any well-behaved continuous
function can be described by an infinite Fourier series — namely, the sum of an infinite
number of sine and cosine terms. In the case of a discrete time series with a finite number
of points, we are required to have only a finite number of sine and cosine terms to fit our
points exactly.

8.4.1 Definition

Using Euler's notation [ exp(ix) = cos(x) + 1 sin(x), where i is the square root of -1]
as a shorthand notation for the sines and cosines, we can write the discrete Fourier series
representation of A(k) as:

N-1
Inverse Transform: Ak = ZFA(n) e

n=0

i 2nnk/N (8.4.12)

where n is the frequency, and F(n) is the discrete Fourier transform. We see that

a time series with N data points (indexed from k=0 through N-1) needs no more than N

different frequencies to describe it (actually, it needs less than N, as will be shown later).
There are a number of ways to describe frequency:

n = number of cycles (per time period P),
fi = cycles per second = n/P,
f = radians per second = 2an/F = 2an/(NAt).

A frequency of zero (n = 0) denotes a mean value. The fundamental frequency,
where n = 1, means that exactly one wave fills the whole time period, P. Higher
frequencies correspond to harmonics of the fundamental frequency. For example, n =
5 means that exactly 5 waves fill the period P.

Fa(n) is a complex number, where the real part represents the amplitude of the cosine
waves and the imaginary part is the sine wave amplitude. It is a function of frequency
because the waves of different frequencies must be multiplied by different amplitudes to
reconstruct the original time series. If the original time series A(k) is known, then these
coefficients can be found from:

START omin
Forward Transform: FA(n) = Z N |¢© (8.4,1b)
k=0

Notice the similarity between (8.4.1a) and (8.4.1b). These two equations are called
Fourier transform pairs. The second equation performs the forward transform,
creating a representation of the signal in phase space (another name for the frequency
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or spectral domain). This process is also known as Fourier decomposition. The first
equation performs the inverse transform, converting from frequencies back into
physical space.

8.4.2 Example

Problem: Given the following 8 data points of specific humidity, g, as a function of

tme:
Index (k): 0 1 2 3 4 5 6 7
Time (UTC): 1200 1215 1230 1245 1300 1315 1330 1345
q (gkg): 8 9 9 6 10 3 5 6

Perform a forward Fourier transform to find the 8 coefficients, Fo(n). To check your
results, perform an inverse transform to confirm that the original time series is recreated.
Remember that the Fq(n) coefficients are complex, each having a real and an imaginary
part: Fg(n) = Frea(n) + 1 Fimag(n)-

Solution: N =8 and At = 15 min, Thus, the total period is P = NAt =2 h.
Equation (8.4.1b) must be used to find Fg(n). For those computer languages that accept
complex numbers, (8.4.1b) can be programmed directly, where each of the A(k) data
points has a real part equal to the value listed in the table, and an imaginary part of zero.

For hand calculation, we can use Euler's formula to translate (8.4.1b) back into sines
and cosines:

N-1 . N1
Fy® = 5 2, AK) cos2mmki) - 2 A) sinmnk/N)
k=0 k=0

As an example, for n = 0, all of the cosines of zero are unity and all of the sines are
zero. This leaves:

'Z

d N

1 1

F,0) = 5 2 AK

which is just the mean of A. For our case: Fq((}) =70 - 0.0i. Forn=1wecan't
make such a simplification, so we are forced to sum over all k for both the real and
imaginary parts. This givesus Fq (1) = 0.28 - 1.03i. Continuing this procedure for all
other n yields:

n Fy(n) n Fq(n)

0 7.0 4 1.0

1 028 - 1.031 5 -0.78 + 0.031
2 0.5 6 0.5

3 -0.78 - 0.031 7 028 + 1.031i
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This is the answer to the first part of the problem. Note that for frequencies greater than
4, the Fourier transform is just the complex conjugate of the frequencies less than 4.

As a check of our transform, we can perform the inverse transform using (8.4.1a)
directly in a computer program. Otherwise, we can use Euler's formula to write it as:

N-1 N-1
AR = ) F (M) cos2mak/N) - D F (n) -sin2nnk/N)
s (real part) =0 (imag.part)

In actuality, there are four sums, not just the two listed above. The remaining sums
consist of the real part of F times the imaginary factor i-sin(...), and the imaginary part of
F times the real factor cos(...). Because the last half of the Foarier transforms are the
complex conjugates of the first half (not countin g the mean), these two sums identically
cancel, leaving the two listed above. Upon performing the calculations for Ak), we do
indeed reproduce the original time series.

Discussion: To graphically demonstrate that the sum of these sines and cosines does
indeed equal our original series, Fig 8.5 shows each individual wave multiplied by its
appropriate amplitude. As can be seen, the reconstructed time series fits perfectly the eight
original data points. In between these points, however, the sum oscillates in a manner that
is not necessarily realistic, but which is irrelevant because it occurs below the
discretization resolution specified by the original data points.
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Fig. 8.5 (a<) Superpasition of sine and cosine waves that recreate (d)
the original timeseries.
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8.4.3 Aliasing and Other Hazards.

Measurements: A basic rule of discrete data analysis is that at least two data points
are required per period or wavelength in order to resolve a wave. Since Fourier analysis
involves splitting arbitrary signals into waves, the two data point requirement also holds
for our arbitrary signals. For example, if we have a total of N data points, then the
highest frequency that can be resolved in our Fourier transform is ng = N/2, which is
called the Nyquist frequency. These requirements apply to measurements; namely, if
a wave period as small as 0.1 s must be measured while flying in an aircraft, then the
physical signal must be digitized at least once every 0.05 s. Similarly, if a wavelength as
small as 1 m must be measured, then the physical signal must be digitized at least once
every 0.5 m.

What happens when there is a physical signal of high frequency that is not sampled or
digitized frequently enough to resolve the signal? The answer is that the true high-
frequency signal is folded or aliased into a lower frequency, creating an erroneous
and deceiving Fourier transform. This is illustrated with aid of the example in the
previous subsection. Look at the first graph in Fig 8.5, where the cosine waves forn=2,
4 and 6 are plotted. Since we started with N = 8 data points, we can anticipate a Nyquist
frequency of n¢ = 4. Namely, the shortest period wave that can be resolved is one that has
4 cycles per period P. Thus, the curve corresponding to n = 6 is greater than the Nyquist
frequency, and is likely to cause problems.

Look closely at the curves for n =2 and n = 6. They coincide exactly at the points k =
0,1,2,3,4,5,6 and 7. In other words, if there were a true signal of n = 6 that was
sampled only at the integer k values listed above, then anyone connecting the resulting
plotted points with a line or curve would find that they have drawn a wave with n =2
cycles per period. In other words, the n = 6 signal was folded into the n = 2 frequency.
Similarly, looking at the third graph in Fig 8.5, the n = 7 sine waves are folded into an
n=1 sine wave. In general, if n; represents a frequency higher than the Nyquist
frequency, then the signal or amplitude of that wave will be folded down to a frequency of
n =N - ny, where it will be added to any true amplitude that already exists at n.

Since this folding or reflection occurs around the Nyquist frequency, it is also known
as the folding frequency. Such folding is readily apparent when wave amplitudes are
plotted as spectral energies (to be discussed in Section 8.6). As illustrated in Fig 8.6, any
nonzero wave amplitudes and spectral energies in the "true” signal at frequencies higher
than the Nyquist frequency are folded back and added to the energies of the "true" signal
at the lower frequencies, yielding an aliased (and erroneous) spectrum.

Aliasing is a problem whenever two conditions both occur: (1) the sensor can respond
to frequencies higher than the rate that the sensor is sampled; and (2) the true signal has
frequencies higher than the sampling rate. As we already know, there is a spectrum of
wavenumbers and frequencies of turbulence in the atmosphere, some of which are very
high. All measurement systems have limitations on the rate at which they can sample.
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Fig. 8.6  llustration that the "measured” spectrum (solid lire} can give
incorrect spectral energies as well as erroneous peak locations
compared 1o the "trug” spectrum (shaded line), when aliasing
causes energies at the higher frequencies to fold back around the

Nyquist frequency (n:) and add o energies at the lower ones.

Sometimes this rate is given by limitations of the data logger or computer digitizer, If this
is the case, then the raw electronic analog signal from the sensor (thermistor,
thermocouple, gust probe accelerometer, etc) should be filtered by an analog electronic
filter prior to the digitizing or sampling to remove frequencies higher than the Nyquist
frequency. Sometimes the sensor itself has such a slow response that it performs the
analog filtering antomatically.

If the analog filtering is not performed, then there is no way to remove the erroneous
aliased component from the resulting time series. Postprocessing of the discrete time
series with digital filters will NOT work, because it is impossible to know what portion of
the wave amplitude at the resolvable frequencies is real, and what is folded into it.

Digital averaging is sometimes successfully used for other reasons, however,
Suppose that a sensor is designed with appropriate analog filters to yield unaliased data
when sampled at a very high frequency. Next, suppose that the amount of this unbiased
discrete data is too large to record in a convenient manner, or is coming in too fast to be
processed. The stream of incoming discrete data values can be block averaged (e.g.,
average every 10 data points), or filtered with a variety of filters (e.g., Butterworth filters)
before being recorded or processed further. This yields a lower-frequency sample without
aliasing errors. If, however, one records only every fifth or tenth (or any interval) value
from the sampled stream, then aliasing is again a problem.

Fourier analysis. Now that we are convinced that we can't resolve frequencies
greater than the Nyquist frequency, why does the Fourier transform operation given by
(8.4.1b) give amplitudes Fa(n) up to the frequency n =N - 1? The answer is that it
doesn't really. Looking at example 8.4.2 again, we again note that Fg(n) for n > ng s just
the complex conjugate of the F(n) values for n <n; This is always the case and can be
proved mathematically, assuming that the initial time series consists of only real numbers.
Hence, the half of the Fy(n) values for which n > n; give no new information.
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Thus, the N different F4 values having both real and imaginary parts superficially
gives 2N pieces of information, but since half of that is the complex conjugate of the other
half, we are left with only N pieces of spectral information. It is reassuring that given
only N data points in our original time series in physical space, we require only N pieces
of information in phase space to precisely describe the data.

For an original time series consisting of complex numbers (2N pieces of data), the
Fourier transform does not have the complex conjugate property described above,
resulting in 2N pieces of information is phase space too. For meteorological data where
the time series is usually real, we still need to utilize the whole Fourier transform with the
complex conjugate information, because without it the inverse transform will produce
complex numbers instead of our desired real number physical field.

Data Window. Fourier series apply to infinite-duration periodic data sets. Stated in
other words, if we examine only a finite size record of data, the Fourier analysis implicitly
assumes that the data is periodic and thus repeats itself both before and after our limited
period of measurement.

In boundary layer meteorology, nothing is periodic for infinite time, or for infinite
distance. Given a true signal (for example temperature) that varies as in Fig 8.7a, if we
measure it over period P (our data window) as in Fig 8.7b, then we are left with the
segment shown in Fig 8.7c. Given this segment, the Fourier analysis assumes that it is
dealing with a periodic (repeating) signal as shown in Fig 8.7d.

In this example, a smoothly varying meteorological signal appears as a saw-tooth
pattern to the Fourier analysis. From basic caleulus, recall that a Fourier analysis can
indeed describe series such as sawtooth or square wave patterns, but a wide range of
frequencies are required to get the sums of all the sines and cosines to make the sharp
bends at the points of the teeth. These spurious frequencies are called red noise by
analogy to visible light because they appear at the low frequency end of the spectrum. To
avoid red noise, we must at the very least defrend the data series by subtracting the
straight line best-fit from the data segment (Fig 8.7c), leaving a modified time series as
exemplified in Fig 8.7¢.

In general, any very low frequency that has a period longer than our whole sampling
period will also generate the noise. If we know a-priori the period of this frequency, such
as diurnal or annual, then we can perform a least-squares fit of this frequency to the time
series and subtract the result from the series. Otherwise, we might try to fit a simple
polynomial curve to the data and subtract it to both detrend it and remove these low
frequencies.

Even after detrending, the sharp edges of the data window cause what is known as
leakage, where spectral estimates from any one frequency are contaminated with some
spectral amplitude leaking in from neighboring frequencies. To reduce leakage, a
modified data window with smoother edges is recommended, such as is shown in Fig
8.7f. Although a variety of smoothers can be used, a common one utilizes sine or cosine
squared terms near the beginning and ending 10% of the period of record, and is known
as a bell taper:
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Raw Data

Fig. 8.7 Atrue signal (a) sampled over a finite time (b) gives the segment (¢)
that is assumed to be periodic (d) by the Fourier transform.” When
the detrended signal (e) is sine or cosine tapered (f) the result is
called "conditioned" data (g). This "conditioned" data (g) can then be
used by FFT routines.

e e e —————.
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sin*(5nk/N) for 0 <k <0.IN
W(k) = 1 elsewhere (8.4.3)
sin(5tk/N) for 0ON<k<N

When this window weight, W(k), is multiplied by the time series, A(k), the result yields a
modified time series with fluctuations that decrease in amplitude at the beginning and end
of the series (see Fig 8.7g). The Fourier transform can then be performed in this modified
time series.

The bell taper data window is not without its problems, Although the tapered ends
reduced the leakage, they also reduce our ability to resolve spectral amplitude differences
between small changes in frequencies. Also, the tapered window reduces high-frequency
noise at the expense of introducing low-frequency noise.

The process of detrending, despiking (removing erroneous data points), filtering, and
bell tapering is known as conditioning the data. Conditioning should be used with
caution, because anytime data is modified, errors or biases can be introduced. The best
recommendation is to do as little conditioning as is necessary based on data quality.

8.5 Fast Fourier Transform

The fast Fourier transform, or FFT, is nothing more than a discrete Fourier
transform that has been factored and restructured to take advantage of the binary
computation processes of the digital computer. As a result, it produces the same output,
and has the same limitations and requirements as the discrete transform. It can also be
used for forward as well as inverse transforms, The description that follows is not meant
to be a comprehensive review of FFT methods, but is designed to give an overview of the
process.

In general, both the forward and the inverse discrete transform can be written as

N-1
X = Z y z**
k=0 (forward) (8.5a)

n=0 (inverse)

where
Forward Transform Inverse Transform
X(n) =Fa(n) X(k) = Ak
Y(k) = Ak)/N Y(n) =Fa(n)

Zy = exp(-i2n/N) In = exp(i2n/N)
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The decimal numbers n and k can be represented by their binary equivalents:

n=22n amd k=) 7k (8.5b)
=0

i=0

where n; and k; represent the individual bits of the number. For example, if N = 8§, then
we need only three bits (j = 0 to 2) to represent n and k, since they can take on values of
only 0 to 7. Thus n =41, + 2:n; + l-ng . For example, 101 is the binary
representation of the decimal 5, giving n,=1,n;=0,andng=1.

Using this binary representation, any function of n is now a function of n,, ny, and
ng, with similar forms for functions of k. Thus, X(n) becomes X( ny, n;, ny). Equation
(8.5a) can now be rewritten, using the forward transform with N = 8 as the example, as:

- } - (4n, +2n, +7n,) (dk, + 2k, +k,)
X(nynp,np) = Z 2 Z Yy kynkg) Z
K,=0 k=0 k=0

Performing the multiplications in the exponent of Z, rearranging terms, and remembering
that Z to certain powers equals unity because of the nature of sines and cosines, we find:

1 1 1

dngk,  Amk, 2nk, 4nk, 2nk, nk,
X(n,,n,, no) = E E E Y(kz, kl, ko) Z Z Z Z Z i
k=0 k=0 k=0

In this last equation the Z's are essentially weighting factors. To solve this equation,
the inner sum is performed, using only the first weight because it is the only weight that is
a function of k. 'When the next sum is performed, the additional two weights are
included. Finally, the last sum uses the remaining three weights. This pattern of solving
the sums, and gradually eliminating the k bits and replacing them with n bits can be
programmed recursively, requires relatively little scratch storage, and is very efficient in
computer time.

To a first approximation, the normal discrete Fourier transform requires N2
operations, while the FFT requires only (3N/2)log,N operations. For small data sets (N
< 100) the resulting computer time or cost difference is insignificant for all practical
purposes, because of other overhead costs such as input and output. But for a data set of
1000 points, for example, the FFT computation takes 0.5% of the time that a traditional
discrete transform computation would take. There is even some microprocessor
hardware available that is specially configured to run FFTs. The bottom line is that the
FFT is fast.

Most modern computer centers, and some statistical packages for microcomputers,
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have "canned” FFT algorithms that users can access without having to write their own.

Some of the early FFT packages were restricted to data sets with N = 2™, where m was
any integer. This meant that data sets slightly too long were truncated to the proper size,
or data sets slightly too short we lengthened by adding bogus data (often zeros or the
mean value). Both of these data mutilation tricks are not recommended. Modern FFTs
factor the series into a variety of prime numbers in addition to the prime number 2,
resulting in very little truncation of the time series.

One problem with all discrete Fourier transforms including FFTs, is that the input
must consist of equally-spaced data points. No missing data is allowed. If the data set
has gaps caused by instrument failures or by spurious data spikes that were removed, then
artificial data points must be inserted to fill the gap. One is not allowed simply to close the
gap by bringing the remaining parts of the data set together, because this alters the periods
or wavelengths present in the original signal. The artificial data points must be chosen
with care, otherwise this "fudge” can destroy an otherwise unbiased data set. Data with
significant gaps can be analyzed with periodogram methods instead (see Section 8.9).

8.6 Energy Spectrum
8.6.1 Discrete Energy Spectrum

In meteorology we are frequently curious about how much of the variance of a time
series is associated with a particular frequency, without regard to the precise phase of the
waves. Indeed for turbulence, we anticipate that the original signal is not physically like
waves at all, but we still find it useful to break the signal into components of different
frequencies that we like to associate with different eddy sizes.

The square of the norm of the complex Fourier transform for any frequency n is:

IFo)P = [Freat pare(m]® + [Fimag, pare(m)]? (8.6.1a)

When [F A(n)[2 is summed over frequencies n = 1 to N-1, the result equals the total biased
variance of the original time series:

N-1 N-1
2 1 T2 _ 2
o, = h_réﬁ (A -A) = n_zl IF, ()l (8.6.1b)

Thus, we can interpret IF,(n)I2 as the portion of variance explained by waves of

frequency n. Notice that the sum over frequencies does not include n=0, because FAO)!
is the mean value and does not contribute any information about the variation of the signal

about the mean. To simplify the notation for later use, define: G = IFA(n)I2 . The

ratio G,(n) / 6,2 represents the fraction of variance explained by component n, and is
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very much like the correlation coefficient squared, 2.

For frequencies greater than the Nyquist frequency the IF A(n)  values are identically
equal to those at the corresponding folded lower frequencies, because the Fourier
transforms of high frequencies are the same as those for the low frequencies, except for a
sign change in front of the imaginary part. Also, since frequencies higher than the
Nyquist cannot be resolved anyway, the ]FA(n)I2 values at high frequencies should be
folded back and added to those at the lower frequencies.

Thus, discrete spectral intensity (or energy), E,(n), is defined as
E (n)= Z-IFA(n)EE, forn = 1to ng, with N = odd. For N=even, E (n) = 2-|Fﬂ(n)l2 is
used for frequencies from n = 1 to (ng -1), along with E,(n) = IFA(n)I2 (not times 2) at
the Nyquist frequency. This presentation is called the discrete variance (or energy)
spectrum. It can be used for any variable such as temperature, velocity, or humidity to
separate the total variance into the components, E, (n), related to different frequencies.
For variables such as temperature and humidity, however, we must not associate the
resulting spectum with concepts of eddy motions, because variations in these variables
can persist in the atmosphere in nonturbulent flow as the "footprints” of formerly active
turbulence.

The variance of velocity fluctuations, u', has the same units as turbulence kinetic
energy per unit mass. Thus, the spectrum of velocity is called the discrefe energy
spectrum. As defined above, the name "energy spectrum” is sometimes used for all
variance spectra.

8.6.2 Spectral Density

Although this chapter has dealt with discrete spectra, a number of theoretical concepts
such as the spectral similarity discussed in the next chapter use continuous spectral
representations. Namely, instead of summing the discrete spectral energy over all n to
yield the total variance, these theories assume that there is a spectral energy density,
Sa(n) that can be integrated over n to vield the total variance.

o, = ISA(n)dn (8.6.22)

The spectral energy density has units of A squared per unit frequency.
We can approximate the spectral energy density by

E, (n)
An

S,@ = (8.6.2b)
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where An is the difference between neighboring frequencies. When n is used to represent
frequency, An =1. For other representations of frequency such as f, we will find that Af
is not necessarily equal to unity.

The S 4(n) points estimated from (8.6.2b) can then be connected with a smooth curve
to represent the shape of the spectrum. An example of this was shown in Chapter 2, Fig.
2.2. Thus, even with discrete meteorological data, we can estimate spectral densities that
can be compared to theories.

8.6.3 Example

Problem: Use the results from the N = 8 data point example of section 8.4.2 to
calculate the discrete spectral energies for all frequencies. Plot the result in the usual
presentation format for discrete spectra. Show an additional graph of the estimate of
spectral density.

Solution:
n Fg(n) [Fq(m)]? Eq(n) Sq(n)
0 7.0 (=mean)
1 0.28-1.031 1.14 2.28 2.28
2 0.5 0.25 0.5 0.5
3 -0.78 - 0.03 1 0.61 1.22 1.22
4 =nf 1.0 1.0 1.0 1.0
5 -0.78 +0.031 0.61
6 0.5 0.25
7 0.28 + 1.03 1 1.14
Sum = 5.0 = 5.0
— e . §
SJL Sig
2t 2
Eq Sq
7 1
0 1 J 3 ra 7 2 3 v
n n
Fig. 8.8 (a) Discrete spectrum and (b} spectral density graphs for
example 8.6.3.
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where Eq(n) has units of specific humidity squared, and Sg(n) has units of specific
humidity squared per unit frequency. Finally, the discrete spectrum is plotted in Fig 8.8a,
and the spectral energy density is plotted in Fig 8.8b.

Discussion. The sum of the spectral energies equals the biased variance of the
original signal, 6,2 = 5.0. This is always a good check of the FFT for you to perform.

8.6.4 Graphical Presentation of Atmospheric Spectra

A wide range of intensities are present in atmospheric turbulence spectra over an even
larger range of frequencies. Atmospheric turbulence spectral energies characteristically
peak at the lowest frequencies, namely at about 1 to 10 cycles per hour. At higher
frequencies, the spectral energy decreases. For example, at frequencies of 10* cycles per
hour the energy is one to two orders of magnitude smaller than at the peak.

We are often concerned about the full range of the spectrum: the peak is associated
with the production of turbulence and usually the largest eddy sizes; the middle
frequencies are associated with the inertial subrange, which is important for estimated
dissipation rates; and the highest frequencies are associated with the dissipation of TKE
into heat by viscous effects. Hence, we need a way to graphically present the spectral data
in a form that not only highlights the important peaks and other characteristics, but which
shows all portions of the wide range of data.

In the discussions that follow, a single idealized spectrum is presented in a variety of
formats in Fig 8.9, The data for these plots is listed in Table 8-1. See Chapter 9 for
examples of real atmospheric spectra.

Linear-linear presentation. When S,(f) is plotted vs. f on a linear-linear graph,
the result has the desirable characteristic that the area under the curve between any pair of
frequencies is proportional to the portion of variance explained by that range of
frequencies. Unfortunately, the plot is useless to view because the wide range in values
results in a compression of the data onto the coordinate axes (see Fig 8.9a). Alternatives
include expanding the low frequency portion of the spectrum (Fig 8.9b) and plotting
f-5(f) instead of just S(f) on the ordinate (Fig 8.9c). Both techniques focus on the
spectral peak at the expense of losing information at the higher frequencies.

Note that the £-S(f) plot causes the apparent peak to shift from the low frequency end
of the spectrum towards the middle of the spectrum. Since £-S(f) is also used in a number
of the other formats listed below, we should not be deceived into thinkin g that the middle
frequencies are the ones with the most spectral energy.

Semi-log presentation. By plotting f-SA(f) vs. log f, the low frequency portions
of the spectra are expanded along the abscissa. Also, the ordinate for the high frequency
portions are enhanced because the spectral density is multiplied by frequency (see Fig

8.9d). Another excellent quality is that the area under any portion of the curve continues
to be proportional to the variance.
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Fig. 8.9  Different presentations of the same spectrum (see text for details).

Log-log presentation. When log[S,(f)] vs. log f is plotted, the result allows a
wide range of frequencies and spectral densities to be displayed. Also, any power law
relationships between S,(f) and f appear as straight lines on this graph. As will be
discussed in more detail in the next chapter, S (f) is proportional to 573 in the inertial
subrange portion of the spectrum, which will appear as a straight line with -5/3 slope on a
log-log graph (see Fig. 8.9e). Unfortunately, the area under the curve is no longer
proportional to the variance.

Log f SA(f) vs. log f. A plot of log[f-S,(D] vs. log f, has all of the desirable
characteristics of the log-log presentation described above. In addition, the quantity
£-S 5(f) has the same units as the variance of A, making scaling or normalization easier.
Unfortunately, the area under the curve is also not proportional to variance (see Fig. 8.9f).
Regardless of this problem, this presentation is the most used in the literature.
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Table 8-1. Arificial data and spreadsheet calculations used to demonstrate
various ways to present spectra.

Variable Value
This is assumed to be the spectrum of a Zi {m) 1000
time series of velocity measurements. U (m/s) 5
Dissip.(m2 s-3)  0.0072
Size 21
__ lLogarithm of____
Mormalized Normalized Normalized Normalized f 5 ts
Frequency Spactrum Frequency Spectrum (1/s) (m2/s3) {m2/s2)
-1.0 -1.3010 0.1000 0.0500 0.0005 158.7401 0.0794
-0.8 -1.2412 0.1580 0.0574 0.0008 115.3005 0.0911
-0.8 -1.1807 0.2510 0.0860 0.0013 83.4309 0.1047
-0.4 -1.1204 0.3980 0.0758 0.0020 60.4486 0.1203
-0.2 -1.0602 0.8310 0.0871 0.0032 43.8016 0.1382
-0.0 -1.0000 1.0000 0.1000 0.0050 31.7480 0.1587
0.2 -1.0000 1.5850 0.1000 0.0079 20.0303 0.1587
0.4 -1.0000 2.5120 0.1000 0.0128 12.6385 0.1587
0.6 -1.0827 3.9810 0.0827 0.0199 6.5914 0.1312
0.8 -1.2175 8.3100 0.0606 0.0316 3.0495 0.0962
1.0 -1.3521 10.0000 0.0445 0.0500 1.4112 0.07086
1.2 -1.4888 15.8490 0.0326 0.0792 0.6530 0.0517
1.4 -1.8215 25.1190 0.0239 0.1256 0.3022 0.0379
1.8 -1.75862 39.8110 0.0175 0.1991 0.1398 0.0278
1.8 -1.8809 63.0960 0.0129 0.3155 0.0647 0.0204
2.0 -2.0255 100.0000 0.0094 0.5000 0.0299 0.0150
2.2 -2.1602 158.4880 0.0068 0.7924 0.0138 0.0110
2.4 -2.2949 251.1880 0.0051 1.2559 0.0064 0.0080
2.6 -2.4286 398.1070 0.0037 1.9905 0.0030 0.0059
2.8 -2.5643 630.9570 0.0027 3.1548 0.0014 0.0043
3.0 -2.6990 1000.0000 0.0020 5.0000 0.0006 0.0032
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As will be discussed in the next chapter, both the abscissa and ordinate are often made
dimensionless by normalizing with respect to scaling variables (see Fig 8.9g). The
scaling variables used in this example are listed in Table 8-1.

8.7 Spectral Characteristics

Instead of discussing spectral behavior theoretically, this section demonstrates spectral
behavior for a single variable through a series of examples with synthetic data. In each of
the following cases, an artificial time series of 20 data points is plotted, along with the
spectrum computed with an FFT program. The spectrum shows E(n) normalized by the
total biased variance, and shows the fraction of the total variance explained by each
frequency. The Nyquist frequency is n=10 for all cases.

Case A (Fig 8.10a): Simple waves of one frequency. All of these
examples show a wave having four cycles per time period. The first four examples in this
case show that the spectrum is independent of the phase of the original time series. A
single simple wave in physical space produces a single spike in the spectrum at n=4 that
explains all the variance. The fifth example shows that if the spectrum is normalized by
the total variance, we still have a single spike that explains 100% of the variance, If the
spectrum had not been normalized, the spike for this fifth case would have been twice as
large as the spikes for the other four cases, because the time series for the fifth case
consisted of a wave with twice the amplitude.

Case B (Fig 8.10b): Simple waves of different frequencies. The first
example shows a time series filled by one wave, resulting in a spectrum with a spike at
n=1. The next three examples show waves with 4, &, and 10 cycles per period in the
time series, resulting in spectra with frequency spikes at n = 4, 8, and 10 respectively.
The fifth example shows a time series with a wave having 12 cycles per period, but the
aliasing problem causes this signal to be folded back to n = 8, where it appears as a spike
on the spectrum.

Case C (Fig 8.10c): Frequencies between resolvable frequencies. The
FFT consists of waves of the fundamental frequency (n = 1) and only the exact harmonics
(n=2, 3, 4,...). But what happens if the real signal has a frequency of n = 4.2 or 4.57
These examples show that a wave of n = 4.5 appears as two large spikes at n = 4 and
n =5, The closer the signal is to an exact harmonic, the greater the spectral energy at that
harmonic and the smaller the energy at the next nearest neighbor. Notice that for a signal
with n = 4.5, the spectrum not only has the two large spikes described above, but there
is also a leakage of some small amount of spectral energy to all the other frequencies. We
might expect that a real turbulence signal consisting of a multitude of frequencies, many of
which are not exact harmonics of the fundamental frequency, will result in a spectrum
with a lot of leakage, making it difficult to separate the true signals from the underlying
noise.
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Case D (Fig 8.10d): Unresolvable high and low frequencies. The first
example shows that if the real signal has n = 0.5, then the computed spectrum has a spike
atn = 1 with a significant amount of leakage to higher frequencies. This is called red
noise and will be discussed in Case E. Atn = 1.5, there is still significant red noise. It
is as if the leakage from the left side of the spike is folded back around n = 0 to larger n
values. Atn = 8.5, the leakage off the right of the peak appears to fold back to the left,
creating a blue noise signal.

Case E (Fig 8.10e): Red noise. When signal with time period longer than the
sampling period is truncated to fit within the sample window, the resulting periodic shape
is fit by waves of the fundamental period and shorter. These waves are largest at the low-
frequency end of the spectrum. As the wave period increases, this becomes more
apparent. In the extreme case of a linear trend (which acts like an infinite period or
wavelength wave), we find a purely red noise spectrum. Its name comes from the fact
that the spectrum shows energy at the incorrect frequencies (i.e., error or noise), and that
most of this noise is at the low frequencies (analogous to the red portion of the visible
light spectrum). We see why it is important to detrend raw signals before computing the
FFT.

Because of unresolvable low frequencies in general, and red noise in particular, most
meteorologists do not consider frequencies of 3 or less as being reliable. Some use n=5
orn =10 asthe cut off. In any case, we look for at least three waves per sampling period
before we are confident that the spectral results are telling us about the physics of the
boundary layer. Often, these low frequencies are not even plotted on spectra that are
presented in the literature.

Case F (Fig 8.10f): Red, white, and blue noise. White noise consists of
approximately equal amplitude spectral energies across the whole ran ge of frequencies.
This can be produced by a spike in the time series, or by completely random "hash"
signal. If we could hear white noise (e.g., the audio analogy), it would sound like a hiss,
like many leaves rustling or many waves breaking.

Blue noise is associated with larger spectral amplitudes at the hi gher frequencies. A
constant signal, shown in the fourth example, consists of just a mean value (ie., at
n=0), and hence has zero variance and no spectral energy. A square wave yields a
spectrum with many peaks and zeros.

Case G (Fig 8.10g): Leakage. The shorter a signal lasts within a record, the
more difficult it is to resolve it. Each of these examples shows a si gnal with five cycles
per period. In the first example, the spectrum shows the desired spike at n = 5 with no
energy at other frequencies. However, as the signal is cut shorter and shorter, the energy
from the spike at n = 5 leaks more and more into the neighboring frequencies. In the last
example with just one wave left in the time series, the spectrum shows a nearly Gaussian
spread. Hence, even though certain signals in the time series may be evident to the eve,
the FFT can have difficulty detecting it.
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Case H (Fig 8.10h): Multiple Waves. These examples were constructed in
reverse, where the spectrum was specified and the time series was generated with an
inverse FFT. When the time series consists of the superposition of a number of different
wave periods or wavelengths, the spectrum shows a number of spikes. If some of these
waves are between harmonics or longer than the fundamental frequency, then the
problems of spreading, leakage, and red noise are superimposed on the other resolvable
signals. Also, for the second example, the two frequencies at n = 4 and 6 result in a beat
frequency of 2, causing the amplitude envelope of the original time series to oscillate as
shown.

Case I (Fig 8.10i): Conditioning. The first three examples show one situation
of an original time series that is superimposed on a trend. Detrending the time series
eliminates the red noise in the spectrum, and tapering the ends has little effect after that.
The last two examples show a wave with n = 1.5, causing a significant amount of noise in
the spectrum. However, after detrending and tapering, the spectrum yields the desired
spikesatn=1andn =2,

8.8 Spectra of Two Variables

Just as we can find the spectrum for a single variable, we can also find a spectrum for
a product of two variables. For example, given observations of w'(t) and 6'(t), we can
create a new time series w'6'(t) on which we can perform routine spectral analyses using
an FFT. Occasionally it is useful to get more information about the spectrum of w'e,

such as how the phase of the w' fluctuations relate to the phase of the ©' fluctuations as a
function of frequency. Cross-spectrum analysis relates the spectra of two variables.

8.8.1 Phase and Phase Shift

Phase refers to the position within one wave, such as at the crest or the trough (Fig
8.11a). Iris often given as an angle. For example, the crest of a sine wave occurs at 80°,
or at n/2 radians. Phase shift refers to the angle between one part of a wave like the
crest and some reference point like a “start time" or the crest of another wave. For

example, in Fig 8.11b the phase of the second wave is shifted 90° to the right of the first
wave.

The equation for a single sine wave of amplitude C that is shifted by angle @ to the
right is:

2rkn
Akn) = C(n}-sin( RN - ‘I’(n)} (8.8.1a)

Through trigonometric identities, we can show that the same wave described above can
also be written as the sum of one sine wave and one cosine wave:
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Fig. 8.11 (a) Phase angles and (b) example of a 90° phase shitt.

27kn )

2nkn
Ak,n) = Cs(n)—sin("—N'—) + Cc(n)-cos( N (8.8.1b)

where C; = C-cos® and C. =-C-sin®.

As shown in section 8.4.1 the Fourier transforms give the amplitudes of sine and
cosine terms in the spectral decomposition of the original field. Thus, we can also
interpret the spectra in terms of an amplitude and phase shift for waves of each frequency.

8.8.2 Cross Spectra

Define G, =IF A(n)i2 as the unfolded spectral energy for variable A and frequency n.
We can rewrite this definition as G, = F A F, , where F,” is the complex conjugate of
Fy and where the dependence on n is still implied.

To demonstrate this last definition, let F, =F, +1F,;, where subscripts 1 and 1
denote real and imaginary parts respectively. Thus, the complex conjugate is simply F,~
=F,,-1F,; . The expression for the spectral energy can now be written as:

G, =F,-F,
(Fp-iFp ) (Fy +iFy)
F,2+iF,F, -1F,F, - F,?
Fo 2 +F,2

IF, ()12

leaving the magnitude squared as a real number.
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Similarly, define the spectral intensity Gg = Fp" -Fy, for a different variable B. We
can now define the cross spectrum between A and B by

Gy, =F\ F (8.8.2a)
. . :2
= Fy Fp, + iF Fp - 1FgFp - 1"FyFy;

Upon collecting the real parts and the imaginary parts, the real part is defined as the
cospectrum, Co, and the imaginary part is called the quadrature spectrum, Q:

Gug = Co-1iQ (8.8.2b)
where
Co = F,, Fp, + Fy,Fp; (8.8.2¢)
and
Q =F,;Fp, - F, Fy; (8.8.2d)

Although not explicitly written in the equations above, F, and Fy are functions of n,
making both the cospectrum and quadrature spectrum functions of n too: Co(n) and
Q(n).

The cospectrum is frequently used in meteorology, because the sum over frequency of
all cospectral amplitudes, Co, equals the covariance between A and B, (ie.,

Z Co(n) = 2a'd"). Note that the cospectrum computed as above is NOT equal to the

spectrum of the time series of the product a'b’.

The quadrature spectrum is usually not used directly, but it too has a physical
interpretation. The quadrature spectrum is equal to the spectrum of the product of b’
times a phase shifted a', where a' is phase shifted a quarter period of n. In other
words, the amount of time lag applied to 2' depends on the frequency, n, such that the
phase shift is always 90° for each n.

Three additional spectra can be constructed from the quad and co-spectra. An
amplitude spectrum, Am, can be defined as

Am = GAB*- GAB

= Q* + Co? (8.8.2¢)

A large amplitude at any frequency n implies that A is very strongly correlated to B at that
frequency, regardless of phase differences between A and B. In other words if both A
and B have a strong amplitude component with frequency n = 5 even if A and B are out of
phase, then Am will be large forn = 5. Also, if the amplitude is small for any frequency
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n, then coherence and phase spectra (described next) are not significant (i.e., unreliable)
for that frequency.
The coherence spectrum, Coh, is defined by:

GABGAB _ QZ + C02

2
Coh™ = =
G, Gy G, Gy

(8.8.21)

This is essentially a normalized amplitude, and is a real number in the range O to 1. It acts
very much like a frequency dependent correlation coefficient. Note that in some of the

literature Coh? is defined as the coherence, rather than Coh. Like the amplitude spectrum,
it is not a function of phase shift.

Finally, a phase spectrum, @, can be defined as

tan® = Q/Co (8.8.2g)

This can be interpreted as the phase difference between the two time series A and B that
yielded the greatest correlation for any frequency, n. The phase spectrum can be used to
infer the nature of the physical flow. For buoyancy waves, 6'is characteristically 90°

out of phase with w'; while for turbulence, the two variables either in phase or 180° out of
phase.

8.8.3 Example

Problem: Given the time series from section 8.4.2 for humidity, and the time series
below for vertical velocity, w:

Index (k): 0 1 2 3 4 5 6 7
Time (UTC): 1200 1215 1230 1245 1300 1315 1330 1345
w (my/s): 0 -2 -1 1 -2 2 1 1

Find and plot:
a) the discrete Fourier transform and the spectrum for w
b) the cospectrum for w and g
¢) the quadrature spectrum
d) the amplitude spectrum
e) the coherence spectrum
f) the phase spectrum.
Also find the discrete Fourier transform and the spectrum for the product w'q'.

Solution: The original time series are listed in Table 8-2 as a reference, along with
the deviations squared and the series w'q'. The Fourier transforms for both w and q are
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Table 8-2. Spectra and cospectra data, computed with an FFT program, and then displayed
here in spreadsheet form.

Timeseries:
k w g w2 q'2 wyg'
0 0 g o] 1 0
1 -2 g 4 4 -4
2 -1 2] 1 4 -2
3 1 -] 1 1 -1
4 -2 10 4 g -8
5 2 3 4 16 -8
& 1 5 1 4 -2
7 1 =] 1 1 -1
Sum: 0 58 Sum: 18 40 Sum: -24
Mean: ¢} 7 Variance: 2 5 Covar: -3
Simple Spectra:
—— W ——— ——Fq
n real imag Gw  Ewiwz real imag Gq Ea/q2
0 0.000 0.000 7.000 0.000
1 -0.104  0.604 0.375 0.375 0.280 -1.030 1.140 0.456
2 -0.250 0.250 0.125 0.125 0.500 0.000 0.250 0.100
3 0.604 0.104 0.375 0.375 -0.780 -0.030 o0.810 0.244
4 -0.500 0.000 0.250 0.125 1.000 0.000 1.000 0.200
5 0.804 -0.104 0.375 -0.780 0.030 0.610
5] -0.250 -0.250 o0.125 0.500 0.000 0.250
7 -0.104 -0.804 0.375 0.280 1.030 1.140
Sum 2.000 1.000 5.000 1.000
Cross-spectra (based on F & G values above): Simple Spectrum of wg' timeseries:
——Gwg —— —— Fing
n Co Q Am Coh2  Phase(®) real imag Gwg  Ewg/(wq)2
0 -3.000 0.000
1 -0.651  0.082 0.428 1.000 174.52 1.104 -0.354 1.343 0.398
2 -0.125  0.125 ©0.031 1.000 135.00 -0.250 1.250 1.625 0.481
3 -0.474 -0.082 0.229 1.000 187.52 0.396 -0.354 0.282 0.084
4 -0.500  0.000 0.250 1.000 180.00 0.500 0.000 0.250 0.037
5 -0.474  0.083 0.229 1.000 172.48 0.396 0.354 0.282
& -0.125  .0.125  0.031 1.000 225.00 -0.250 -1.250 1.825
7 -0.651  .0.062 0.428 1.000 185.48 1.104  0.354 1.343
Sum 0.000

: -3.000 6.750 1.000
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Fig. 8.12 (a) Amplitude spectrum, (b) phase spectrum, and (¢) the co-spectral
and quadrature components of the cross spectrum for example 8.8.3.

then found using an FFT program, and are listed in Table 8-2 along with their
corresponding unfolded spectral intensities, Gy, and Gy, and the fraction of variance

explained, Ey, }swz and Eq ;'sqz , where s represents the variance.

Also listed is a subtable with co- and quad- spectral components of Gygs the resulting
values of Am, CohZ, and the phase angles in degrees. These are plotted in Fig 8.12.
Finally, the simple spectrum of the w'q’ time series is listed.

Discussion: The biased variances of the w and g time series are 2.0 and 5.0,
respectively. From Table 8-2, we see that the sum of the Gy, and G, spectral components
equals their respective variances. This is always a good check to do with the analysis.
The associated normalized spectral components, E,, /s,2 and Eq Isqﬁ , sum to unity as

desired. Also, the covariance w'q’ = -3.0, which agrees with the sum of the Co

cospectral components.

Looking at the original time series, we see that w' is usually positive when qis
negative, as confirmed by the negative covariance. Thus, we anticipate that w' and q' are
180° out of phase. The phase spectrum supports this. In fact, the only phase values
which are substantially different from 180° are those for which the amplitude (Am) values
are small, suggesting that these phase values can't be trusted.
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It is surprising to find that the coherence is 1.0 for all frequencies. This indicates that
there is a very close relationship between w and q for all frequencies or wavelengths,
for this contrived example. For real turbulence data the coherence would not equal 1.0 for
all frequencies.

Next, look at the individual q series. There is an obvious oscillation with three
cycles within the whole period of record. In addition there is a background low frequency
change of the time series. Looking at the simple spectrum for g, the spectral intensity is
indeed large forn=3andn=1. A similar conclusion can be reached for w. For both of
these series, there is a distinct spectral minimum atn =2.

This minimum shows up in the cospectrum atn = 2. Thus, waves with two cycles per

period contribute little to the total covariance w'q’. This is in sharp contrast with the w'q’

time series itself, which shows a very definite n = 2 wave. The simple spectrum analysis
of w'q' also yields the largest spectral component at n = 2. This tells us that the variance
(not covariance) of the w'q’ time series has a large contribution at n = 2, even though the

covariance itself, w'q’, has a minimum atn =2,

In the discussion presented above, it was easy to compare the spectra with features in
the original time series, because the series were so short. For real turbulence data
consisting of thousands of data points, it is not so easy to pick out features by eye. For
these situations, spectral analysis is particularly valuable.

8.9 Periodogram

The periodogram is just a least squares best fit of sine and cosine waves to the original
signal (i.e., to the time series). Because the original time series need not consist of
evenly spaced data points for the periodogram to work, it has a very distinct advantage
over the discrete Fourier transform. In fact, for some data sets with data gaps or missing
data, it is the only method to calculate spectral information short of making up bogus data
to fill the gaps. The prime disadvantage of the periodogram is that it takers longer to
compute than an FFT.

First, the mean of the original time series of variable A is subtracted from each A(k)
data point to yield a modified time series for A'(k). For each frequency (n) a wave of the
following form is fitted to the data:

2rkn 2rkn
Al = a,cos| Ty | + @,sin ~ (8.9a)

where A' is the deviation of A from the mean, and where a, and a, are the best-fit
coefficients to be determined. Solving for a; and a, (both a function of n) in the least-
squares sense gives:



136 BOUNDARY LAYER METEOROLOGY

xviT - ACs” xeTe - A e’
= ) =
a, = " == and a, e (8.9p)

(s'¢h” - ¢ 8 (sc) -¢ 8

|

>

N

[¥]

where
s' = sin[2nnk/N] - sin[2nnk/N] and ¢ = cos[2rnk/N] - cos[2nnk/N]

and where the overbar denotes an average over all N data points of the original time series.
In the definitions of ' and ¢' above, note that the overbar terms in each expression are
identically equal to ZeT0 only for n equal to an integer value.
Given the best fit from above, we can compute the correlation coefficient squared,
2(n):
2 explained variance a Ac' + 3, AS

= R = ——— .
r@) total vanance 2 (8.9¢)

If waves at frequency I explain a lot of variance in the original signal, then 12(n) is close
to 1. Otherwise, it is closer to zero. For integer values of n, r2(n) is equal to the
normalized spectral intensity, E5(0)/s Az, of the FET. This is where the spectral
information comes from.

We must solve (8.9b & ¢) many dmes, for each different value of n that we are
interested in. To calculate a complete spectra, We should solve the equation for at least the
N different integer values of n. Thus, when r2(n) is plotted vs. 1, the result is a spectrum.
As an example, the spectra plotted in section 8.7 could have been labeled as 12 vs n, where
2 would have been computed using periodogram methods. Note that we can also solve
the equations for noninteger values of 1, and for n in the range 0 to 1, if desired, although
sine waves of noninteger values are not mutually orthogonal.

.10 Nomnlocal Spectra

Contained within the nonlocal-closure transilient matrix is information about the
amount of fluid that mixes between each pair of grid-point locations in a column of air
during a finite tme. This information can be extracted and grouped to yield spectral
information about the contributions of different wavelengths to the overall mixing
process. Such 2 spectrum differs from the spectrum of the fluid state obtained from
harmonic analysis (FFT) of measurements of temperature, velocity or other state
variables, as described in all the previous sections of this chapter. Tennekes (1976)
pointed out that the FFT Fourier modes do not have a one-to-one correspondence with
eddies.
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8.10.1 Transport Spectra

The turbulent flux is the result of a turbulent process. Without the process of eddies
moving and mixing various air parcels, there would be no turbulent flux regardless of the
state of the air. Transport spectra are based on fluxes, while state spectra (FFTs) are
based on variances.

To see how transport spectra (TS) are related to the transilient turbulence theory, start
with the definition for kinematic flux given by (6.8.4b). Instead of summing over the
contributions from ALL pairs of grid points within the domain of turbulence, as specified
in (6.8.4a), we can selectively sum over only those pairs of points having a specified
separation distance (i.e., wavelength). If we let m-Az equal the wavelength of interest,
then the portion of flux associated with wavelength-index m that contributes to the total
flux at height-index k (i.e., at height z =k-Az) is:

k N

Az z 7 |
TS(kam) = E Z Z 6m,.-i-j| |:cji ;i - C‘}GJJ (8.1013)

i=1 j=k+1

where Sij is the usual Kronecker delta, Az is the vertical grid increment, At is the timestep
increment, and m is an integer between 1 and N.
The total flux at location k is given by the sum of transport spectra over all
wavelengths:
N

wiEk) = 2 TS(k.m) (8.10.1b)

m=1

It is always a good check to use (8.10.1b) confirm that the sum of the transport-spectral
components does indeed equal the total flux.

A case-study example of a transport spectrum is shown in Fig 8.13 for the kinematic
heat flux at two different heights within the turbulent boundary layer near the Cabauw
tower in the Netherlands at 1500 UTC, 30 May 1978 (Stull and Driedonks, 1987). A 3
km column of air near the tower is modeled using 30 grid boxes, each 100 m thick. The
mixed layer within this column at 1500 UTC was about 2100 m thick.

Ataheightof z= 100 m (ie., at k = 1) we find that the smallest resolved wavelengths
contribute most the the heat flux for this case, while the wavelengths of the range 1000 m
to 2000 m make a smaller, but yet significant, contribution. At a height of 500 m above
ground the smallest wavelengths contribute virtually nothing to the total flux, while
wavelengths in the 500 m to 1700 m range dominate. At both of these heights, it is
interesting to see that the largest wavelength within the turbulent domain has a negative
contribution to the total heat flux. This is associated with the entrainment of warm air
downward by the thermal-scale eddies.
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Fig. 8.13 Transport spectra (TS) for heat flux wT" at two heights ina 2100 m
thick mixed layer, valid at 1500 UTC on 30 May 1978 at Cabauw, The
Netherlands. The contributions of each wavelength to the turbulent
flux are shown. Based on simulation by Stull an Driedonks (1987).

8.10.2 Process Spectra

One limitation of transport spectra is that the flux contribution can be small even if the
mixing process is vigorous. This can happen when the difference of the variable values
between the heights being mixed is small or zero. To help focus on the mixing process
alone, we can define a process spectrum that does not use the values of the variable
being mixed:

k N

PSm) = 9, X By ¢ ©AY (8.10.22)

i=1 j=1

One expects this spectrum to be the same for heat, moisture, tracers, and maybe for
momentum (neglecting pressure effects and waves), because it describes the mixing
process rather than the effect of the mixing on the fluid state.

Fig 8.14 shows a process spectrum for the same Cabauw case as Fig 8.13. As
before, the smallest wavelengths are the most important at the lowest height. As height
increases, the peak in the spectrum becomes broader, less peaked, and shifts to longer
wavelengths.

This behavior is related to mechanisms that generate turbulence. Near the surface,
strong superadiabatic lapse rates and wind shears create strong dynamic instabilities across
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short distances, to which the transilient parameterization described in Chapter 6 responds
with vigorous mixing at small wavelengths. Near the entrainment zone, however, the
lapse rate is locally stable, suppressing generation of small-scale mixing except by wind
shear. The largest scales continue to be slightly unstable near the entrainment zone,
associated with warm thermals rising from the surface layer.

- Helght {m)
0.15 +

Fig. 8.14 %0
Process specira —o— 1000
(PS) for the same —— 1500
case as Fig. 8.13, 0.10 ¢ —— 2000
showing the —o-— 00
contribution of Ps
each wavelength
1o the total mixing 0.05 L
at the indicated ’
height.

000, 500 1000 1500 2000

Wavelength (m)

Prandtl (1923) recognized that eddies of a variety of sizes can simultaneously operate
at any point in the turbulent domain. Due to lack of computer power in the early 1900s,
he suggested averaging over the spectrum of eddy sizes to yield one mixing length for
each point in space. At the time he had no real measure of the relative importance to the
overall mixing length of the various eddy sizes. Instead, he parameterized the mixing
length directly as a function of boundary layer and turbulence scales, as discussed in
Chapter 6.

We can use the process spectrum to examine the relative importance of various scales
of mixing to the overall mixing length by applying the process-spectral amplitudes as
weights for their respective wavelengths. The resulting weighted wavelength is like a
mixing length, /, which we can find at each height (z = k-Az):

N
2 m - PS(k,m)
(k) = Az-B=1

x (8.10.2b)

2 PS(k,m)

m=1

Fig 8.15 shows mixing lengths as a function of height for the same Cabauw case
study. The mixing length increases with height in the bottom of the mixed layer, but
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becomes nearly constant with height in the top half of the mixed layer. The mixing length
is undefined in the nonturbulent air above the mixed layer, because the process spectral
amplitudes are zero.
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8.11 Spectral Decomposition of the TKE Equation
8.11.1 Spectral Decomposition Methods

Although we have concentrated on discrete spectral methods in this chapter, an
obvious extension is to use integrals to describe the Fourier ransform pair for continuous
functions. In the following example, we will decompose the original function A(t,x) into
a Fourier integral in a single spatial direction, x, but will not perform a similar
decomposition in time. For this case, the Fourier transform pair is:

Inverse Transform A(L,x) ='[ F(t,x) e ™ dic (8.11.1a)

]

1 -i
Forward Transform F(t,K) = o J A(tx) e ™ dx (8.11.1b)
7 -
where K is wavenumber.
Substitution of (8.11.1a) into a term like 9A(1,x)/x yields:

JALX) D N S
T = JF{I,R)C dx = IF(L,K)
K

K

acim - . iKx
X de = | Fix)ike  dx

K
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On the other hand, a term like dA(t,x)/dt becomes:

dACX) _ [ AFLY)
at B ot

K

e dx

As an example of how this is used in complete equations, start with the simple
advection equation with constant mean wind,

d A(t.x) -.T d A(t,x)

ot ox

and spectrally decompose it to yield:

J d F(t,K)
ot

e dx = -T J F(ix) ixe  dx

An integral over wavenumbers appears in every term of the above equation. Thus, we
could focus on the contribution of any ONE wavenumber to the whole equation by
looking at the respective integrands (moving U under the integral because it is not a
function of x):

dF(t,x) — .
—a(tl e™ = -U F@x) ike

The factor exp(ixx) appears in every term of the above equation, and can be cancelled
out. This leaves use with a spectral representation of the advection equation:

0Ftx) /ot = -U ik FE(tx)

As you have probably anticipated, we could let A(1,x) represent a variable like

perturbation velocity, u'(t,x), or perturbation potential temperature, 8'(t,x). Thus we can
use the same general approach as show above to spectrally decompose the TKE equation.

8.11.2 Spectral Representation of the TKE Equation
Since the spectral decomposition of the TKE equation is somewhat complex, the

reader is referred to Batchelor (1953) and Borkowski (1969) for the details. The end
result for homogeneous turbulence, where § is the spectral energy, is:
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SLx) _ & YLK - ¢(t,l()a—U GO NN K S(tx)  (8.112)
ot Bv aZ aK
I m v V(x) VII

TermI  The local time tendency of the k™ spectral component of the TKE

Term I  Buoyant production or loss associated with the k' component of w 9

Term IV Mechanical (shear) production associated with the x component of u'w'

Term V(x) Convergence of TKE transport across the spectrum
Term VII Viscous dissipation of the k2 component of TKE

This equation was the one referenced in section 5.3, where the relative contributions of the
four terms on the right of (8.11.2) were plotted. When integrated over wavenumbers
from 0 to oo, the result is the TKE equation (5.1b).

The individual factors are defined as follows: TKE = fS(t,x) dx, w'e ' =

[v@x) de, ww' = Jo(tx) dk, and e=2v k2 S(t,x) dk, where the integrals are

from O to e, The transport term 0Tr/dx becomes zero when integrated across the
spectrum, because it represents the transport of existing TKE from the low wavenumber
portions of the spectrum (where energy is produced) to the high wavenumber regions
(where it is dissipated).

In the inertial subrange portion of the spectrum where there is neither production nor
dissipation, we would expect that the transport across the spectrum, Tr(t,x) would be

equal in magnitude to the total dissipation rate: Tr(t,x) = € This transport is nothing
more than the energy cascade that was introduced early in the text.
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8.13 Exercises

iy

2)

3)

5)

6)

7)

8)

Given the following set of rurbulence velocity measurements, find the autocorrelation
function using both the exact and approximate formulae. These measurements were
taken every second:

5.5, 6.3, 7.4, 33, 38, 59, 6.1, 5.7, 6.3, 7.1, 458, 3.1, 2.1, 24, 30

Plot this time series and your autocorrelation functions on separate graphs. What is
the difference between the exact and approximate autocorrelation curves?

Compute the structure function vs lag, for the data of problem 1. Plot and discuss
your results. Find the structure function parameter. Discuss the quality of the fit of
(8.3.11b) to this data set.

Theoretically prove that if A(t) =sin(t), then R(L) = cos(L).

Prove analytically the following relationship between structure function and
autocorrelation:  D(L) = 6,2 [1-R(L)]. Assume stationary turbulence (i.e., 2 is
constant).

Compute the exact autocorrelation and structure function for the following data set,
and plot your results for lags from O through 180 s. Discuss how the shape of the
original time series compares with the peaks in the autocorrelation curve.

us) G wim/s) us) T wm/s)
0 25 2
10 23 2 110 20 -4
20 21 -1 120 19 -1
30 21 1 130 20 1
40 30 4 140 25 3
50 20 -3 150 21 0
60 24 3 160 25 1
70 23 1 170 23 0
80 23 2 180 21 -2
90 24 3 190 20 -1
100 23 -1 200 19 -2

Compute the discrete Fourier transform for the time series from problem 1. Instead of
using a canned FFT package, write your own program or develop a spreadsheet to
solve it. Check your results by doing an inverse FFT to reconstruct the data set. Also
check to see that the sum of the spectral energies equals the biased variance of the
original signal. Compute and plot the spectrum.

Compute the discrete Fourier transform for the time series from problem 1, using a
canned FFT program. If you solved problem 6, how do your answers compare.
Prove mathematically that sine waves of different integer frequencies, n, are
orthogonal to each other. By orthogonal, we mean that a wave with one n value
cannot be described by a sum of waves with other n values. As an alternative, test the
orthogonality with some specific cases. For example, define A(k) as a sine wave with
n=2. Then see if the discrete Fourier transform of this wave has any energy at n=3,
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9) Compute the individual FFTs for the two data sets from problem 5, using canned
statistical packages. Compare the simple spectrum for T with that for w.

10) Using the FFT temperature output from problem 9, set the 5 frequencies nearest the
Nyquist frequency to zero, on both sides of the Nyquist frequency. Do this to the
Fourier transform itself, not to the spectrum. Then use this modified phase space data
to compute an inverse transform. Plot the resulting physical space time series, along
with the original temperature time series from problem 5. What you have just done
was an ideal low-pass filter.

11) Use the FFT output from problem 9 to manually compute (or use a spreadsheet) the
cross spectral information: cospectrum, quadrature spectrum, coherence, amplitude,
and phase spectra. If you have a canned statistical package that also computes these
values, compare the results.

12) Compute a new time series of w'T" values from the data in problem 5. Calculate the
covariance for this series, and then do an FFT on the series. Compare the resulting
simple spectrum from this FET output with the cross spectral results from problem 11.

13) Write a program to compute the periodogram. Use it to find the spectrum (2 values
vs. nn) for the data in problem 1, for n values ranging from 0.1 to 10, with increments
of An = 0.2. Compare the r* values for integer n with the spectral output from
problem 6 normalized by the total variance.

14} If you have an odd number of data points in a time series vs. an even number, how
does that affect the Nyquist frequency?

15) When the spectral form of the TKE equation (8.6.2) is integrated over wavenumber
from 0 to e, the result is close to the TKE equation (5.1b).

(a) Discuss the differences.

(b) Also, if (8.6.2) is integrated over wavenumbers from 0 to ks, where x5 is in the
middle of the inertial subrange, then describe the physical relationships and
magnitudes of the resulting integrated terms.

16} Write a computer program to generate a time series consisting of 10 oscillations of a
perfect sine wave within a 1-minute period. Sample this series 18 evenly-spaced times
during that same period. Plot this sampled time series, and discuss the shape in
relation to the Nyquist frequency and aliasing.

17) Prove mathematically that the Fourier transform results are also the best-fit sine and
cosine waves in the least-squares sense.

18) Use the Profile B data and the wransilient matrix from example 6.8.5 to calculate the the
transport and process spectra for all wavelengths (m = 1 to 5) for heights z = 100,
200, and 300 m, and plot your results on separate graphs.

19) Spectrally decompose equation (3.5.3c). Comment on the wavenumber dependence
of advection terms (both turbulent and mean).



